
M A N N I N G

Evan M. Hahn

Writing, building, and testing
Node.js applications

IN ACTION

Express in Action
Licensed to <miler.888@gmail.com>

Licensed to <miler.888@gmail.com>

Express in Action
Writing, building,

and testing Node.js
applications

EVAN M. HAHN

M A N N I N G

SHELTER ISLAND
Licensed to <miler.888@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor: Deepak Vohra
PO Box 761 Copyeditor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreader: Matthew Merkes
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617292422
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
Licensed to <miler.888@gmail.com>

www.manning.com

brief contents
PART 1 INTRO ..1

1 ■ What is Express? 3

2 ■ The basics of Node.js 18

3 ■ Foundations of Express 31

PART 2 CORE..51

4 ■ Middleware 53

5 ■ Routing 70

6 ■ Building APIs 87

7 ■ Views and templates: Pug and EJS 104

PART 3 EXPRESS IN CONTEXT..117

8 ■ Persisting your data with MongoDB 119

9 ■ Testing Express applications 146

10 ■ Security 172

11 ■ Deployment: assets and Heroku 193

12 ■ Best practices 218
v

Licensed to <miler.888@gmail.com>

Licensed to <miler.888@gmail.com>

contents
preface xiii
acknowledgments xiv
about this book xvi
about the cover illustration xix

PART 1 INTRO...1

1 What is Express? 3
1.1 What is this Node.js business? 4
1.2 What is Express? 6

The functionality in Node.js 6 ■ What Express adds to Node.js 8

1.3 Express’s minimal philosophy 9
1.4 The core parts of Express 9

Middleware 10 ■ Routing 11 ■ Subapplications 11
Conveniences 12

1.5 The ecosystem surrounding Express 12
Express vs. other web application frameworks 12 ■ What Express is
used for 14 ■ Third-party modules for Node.js and Express 14

1.6 The obligatory Hello World 16
1.7 Summary 16
vii

Licensed to <miler.888@gmail.com>

CONTENTSviii
2 The basics of Node.js 18
2.1 Installing Node 19

Running your first Node script 19

2.2 Using modules 20
Requiring built-in modules 20 ■ Requiring third-party modules
with package.json and npm 21 ■ Defining your own modules 24

2.3 Node: an asynchronous world 25
2.4 Building a web server with Node: the http module 28
2.5 Summary 30

3 Foundations of Express 31
3.1 Middleware 32

Hello World with Express 33 ■ How middleware works at
a high level 34 ■ Middleware code that’s passive 36
Middleware code that changes the request and response 37
Third-party middleware libraries 38

3.2 Routing 40
3.3 Extending request and response 41
3.4 Views 43
3.5 Example: putting it all together in a guestbook 44

Getting set up 45 ■ The main app code 45
Creating the views 46 ■ Start it up 48

3.6 Summary 49

PART 2 CORE ..51

4 Middleware 53
4.1 Middleware and the middleware stack 54
4.2 Example app: a static file server 55

Getting set up 56 ■ Writing your first middleware function:
the logger 58 ■ The static file server middleware 60
404 handler middleware 61 ■ Switching your logger to an
open source one: Morgan 63 ■ Switching to Express’s built-in
static file middleware 64

4.3 Error-handling middleware 65
4.4 Other useful middleware 68
4.5 Summary 69
Licensed to <miler.888@gmail.com>

CONTENTS ix
5 Routing 70
5.1 What is routing? 70

A simple routing example 71

5.2 The features of routing 71
Grabbing parameters to routes 72 ■ Using regular expressions to
match routes 72 ■ Grabbing query arguments 74

5.3 Using routers to split up your app 74
5.4 Serving static files 76

Static files with middleware 76 ■ Routing to static files 78

5.5 Using Express with HTTPS 78
5.6 Putting it all together: a simple routing demo 80

Setting up 81 ■ The main app code 81 ■ The two views 83
The application in action 85

5.7 Summary 85

6 Building APIs 87
6.1 A basic JSON API example 88
6.2 A simple Express-powered JSON API 90
6.3 Create, read, update, delete APIs 92

HTTP verbs (also known as HTTP methods) 93
CRUD applications with HTTP methods 95

6.4 API versioning 96
6.5 Setting HTTP status codes 99

Setting HTTP status codes 100 ■ The 100 range 101
The 200 range 101 ■ The 300 range 102 ■ The 400
range 102 ■ The 500 range 103

6.6 Summary 103

7 Views and templates: Pug and EJS 104
7.1 Express’s view features 105

A simple view rendering 105 ■ A complicated view
rendering 105 ■ Making all view engines compatible
with Express: Consolidate.js 108

7.2 Everything you need to know about EJS 109
The syntax of EJS 109
Licensed to <miler.888@gmail.com>

CONTENTSx
7.3 Everything you need to know about Pug 112
The syntax of Pug 112 ■ Layouts in Pug 113
Mixins in Pug 115

7.4 Summary 115

PART 3 EXPRESS IN CONTEXT117

8 Persisting your data with MongoDB 119
8.1 Why MongoDB? 120

How Mongo works 121 ■ For you SQL users out there 122
Setting up Mongo 123

8.2 Talking to Mongo from Node with Mongoose 124
Setting up your project 124 ■ Creating a user model 125
Using your model 129

8.3 Authenticating users with Passport 136
Setting up Passport 137

8.4 Summary 145

9 Testing Express applications 146
9.1 What is testing and why is it important? 147

Test-driven development 148 ■ Cardinal rule: when
in doubt, test 150

9.2 Introducing the Mocha testing framework 150
How does Node.js testing work? 151 ■ Setting up Mocha and
the Chai assertion library 151 ■ What happens when you
run your tests 152 ■ Writing your first test with Mocha
and Chai 153 ■ Adding more tests 154 ■ More features
of Mocha and Chai 158

9.3 Testing Express servers with SuperTest 159
Testing a simple API 161 ■ Filling in the code for your
first tests 165 ■ Testing HTML responses 166

9.4 Summary 171

10 Security 172
10.1 The security mindset 173
10.2 Keeping your code as bug-free as possible 173

Enforcing good JavaScript with JSHint 174 ■ Halting after errors
happen in callbacks 175 ■ Perilous parsing of query strings 176
Licensed to <miler.888@gmail.com>

CONTENTS xi
10.3 Protecting your users 178
Using HTTPS 178 ■ Preventing cross-site scripting attacks 179
Cross-site request forgery (CSRF) prevention 182

10.4 Keeping your dependencies safe 185
Auditing the code 186 ■ Keeping your dependencies up
to date 186 ■ Check against the Node Security Project 187

10.5 Handling server crashes 187
10.6 Various little tricks 188

No Express here 188 ■ Preventing clickjacking 189
Keeping Adobe products out of your site 190 ■ Don’t let
browsers infer the file type 191

10.7 Summary 192

11 Deployment: assets and Heroku 193

11.1 LESS, a more pleasant way to write CSS 194
Variables 195 ■ Functions 196 ■ Mixins 197
Nesting 198 ■ Includes 200 ■ Alternatives to LESS 200

11.2 Using Browserify to require modules in the browser 200
A simple Browserify example 201

11.3 Using Grunt to compile, minify, and more 203
Installing Grunt 203 ■ Compiling LESS with Grunt 204
Using Browserify with Grunt 207 ■ Minifying the JavaScript
with Grunt 207 ■ Using Grunt watch 208 ■ Other helpful
Grunt tasks 209

11.4 Using connect-assets to compile LESS and
CoffeeScript 209
Getting everything installed 210 ■ Setting up the
middleware 210 ■ Linking to assets from views 211
Concatenating scripts with directives 211

11.5 Deploying to Heroku 212
Getting Heroku set up 212 ■ Making a Heroku-ready app 213
Deploying your first app 214 ■ Running Grunt on Heroku 215
Making your server more crash resistant 216

11.6 Summary 217
Licensed to <miler.888@gmail.com>

CONTENTSxii
12 Best practices 218
12.1 Simplicity 219
12.2 File structure pattern 220
12.3 Locking down dependency versions 221

The simple way: eschewing optimistic versioning 222
The thorough way: npm’s shrinkwrap command 225
Upgrading and adding dependencies 226

12.4 Localized dependencies 226
Invoking commands directly 227 ■ Executing commands
from npm scripts 227

12.5 Summary 228

appendix Other helpful modules 229

index 231
Licensed to <miler.888@gmail.com>

preface
Like many people working with Express, I started out as an accidental front-end web
developer. I was trying to add dynamic content to a website and hacked together
some of the worst jQuery code this world has ever seen. After many years, my code
became less and less embarrassing as I became more and more competent as a
JavaScript web developer.

 A lot of web developers were excited by the prospect of Node.js. Being able to write
JavaScript on the server meant that our abilities would grow without having to lift a
finger; it seemed, once we learned how to write front-end web applications, we’d know
how to write back-end web servers. While we did have to lift a few fingers, this promise
turned out to be closer to true than false. We were able to do a comparatively small
amount of work to write full-stack web applications, and that was a true blessing.

 Express came on the scene as an easier way to write Node.js web applications, and I
was hooked. After using it at work, I started using it at home for my personal projects.
I wrote a tutorial called “Understanding Express.js,” which did a run-through of the
framework at a conceptual level. This post was picked up on various JavaScript news
sites and it’s among the most popular posts on my website. A fantastic fluke!

 The flukes continued when Manning Publications approached me and asked me
to write a full book about Express. These words are evidence that I said yes!
xiii

Licensed to <miler.888@gmail.com>

acknowledgments
There were so many people who helped out with this book.

 I’ll start with folks at Manning Publications:
 Thanks to Nicole Butterfield for approaching me about writing this book—she’s

the first person I spoke to at Manning. Mike Stephens and Marjan Bace have been
keeping an eye on the book throughout the process and have helped steer it in a good
direction. Matt Merkes did the technical proofing and made sure that all the content
in here is as accurate as possible. Thanks to Linda Recktenwald for copyediting the
whole manuscript and to Mary Piergies and Kevin Sullivan for bringing this book into
final production. I’d also like to thank Sean Dennis for being my editor on the first few
chapters; he offered a ton of valuable feedback that formed the early stages of this book.

 A slew of reviewers (some anonymous and some not) offered a lot of comments
that really shaped the book. Many of them have interacted with me on Manning’s
Author Online forum. In alphabetical order, the forum participants include bio-
springxyz, BobCochran, grovejc, jtlapp, kwils, Magnitus, Misa, pala, RichD, and stlcub-
sfan, and a few anonymous users. The following reviewers all read the manuscript in
its early stages and gave invaluable feedback: Blake Hall, Carlos Rubén Alfaro Díaz,
Chang Liu, David Torrubia, Hector Lee, Jeff Smith, John Larsen, Jonathan Sewell,
Koray Guclu, Nick McGinness, Nicolas Modrzyk, Paul Shipley, Rich Sturim, Ruben
Verborgh, Tim Couger, Trent Whiteley, and William E. Wheeler.

 The last person from Manning I must thank is my fantastic editor, Dan Maharry.
His feedback and guidance cannot be overstated. He gave huge, book-wide sugges-
tions that steered the direction of the book. He gave small, sentence-level suggestions
xiv

Licensed to <miler.888@gmail.com>

ACKNOWLEDGMENTS xv
that made individual statements clearer. The book is largely what it is today because of
Dan’s help.

 I should also thank everyone who created Express. Thanks to TJ Holowaychuk for
creating Express, and for Doug Wilson who continues to maintain it with the support
of StrongLoop.

 Thanks to Sencha, Pixc, and Braintree for giving me Express-based projects to
work on, which gave me a ton of experience.

 Thanks to EchoJS and the JavaScript Weekly newsletter for promoting my original
Express.js tutorial. Without that post being sent around the web, I’d never be writing
this book!

 Finally, I should thank everyone in my personal life that supported me as I wrote
this book. For fear of getting overly sentimental in a technical book (before it’s even
started), I’ll just name them: Mom, Dad, Jeremy, Baba, Olivia, and Peaches. I only
gloss over your importance because it’s more difficult to quantify and because I’m not
an eloquent enough writer.

 This book would be an absolute wreck without all these people. Thank you!
Licensed to <miler.888@gmail.com>

about this book
Welcome to Express in Action! This book aims to teach you everything about Express.js,
the web framework that makes the powerful Node.js easy to use.

 This book assumes you have intermediate JavaScript knowledge. This includes
things like anonymous functions, closures, and callbacks.

Roadmap
This book is divided into three parts.

 Part 1 is an introduction to Express and the shoulders it stands on. You might won-
der: what is Express? What is its relationship to Node.js (and what is Node.js)? What
can Express do? What can’t it do? All of these questions (and more) will be answered
in the first three chapters. Part 1 aims to give you a strong conceptual understanding
of the framework.

 Armed with that strong knowledge, you’ll delve into part 2, which covers Express’s
features in detail. In Part 1, we mention that Express has a feature called “routing.” In
part 2, chapter 5 is dedicated to how routing, which allows you to map different
requests to different request handler, really works. You’ll learn the ins and outs of
routing and how to use Express with HTTPS. You’ll also explore Express 4’s new rout-
ers features, and build a couple of routing-centric applications. Another major feature
of Express is its middleware stack (the focus of chapter 4) which is effectively an
array of functions. In chapter 6, you use routing and middleware to build a web server
that deals purely in JSON. The other big feature of Express is Views (explored in chap-
ter 7). Views allow you to dynamically render HTML.
xvi

Licensed to <miler.888@gmail.com>

ABOUT THIS BOOK xvii
 With a solid understanding of core Express from part 2, we’ll turn to part 3,
which integrates Express with companion tools. As we’ll see, Express can’t do every-
thing on its own—it needs to integrate with other tools in order to be truly useful
(chapter 8). We can’t possibly go through all of the possible permutations of
Express apps and their companions, but we’ll go through a number of common use
cases that you can use to build web applications with the framework. Chapter 9
shows how to make your Express applications as robust as possible by testing; chap-
ter 10 focuses on securing Express applications; chapter 11 shows how to deploy
applications into the real world, and chapter 12 shows you how a mature Express
application is put together.

 And after that, you’ll close the book. You'll be able to make your colleagues look
like fools, at least when it comes to Express.js.

Code conventions
This book provides copious examples that show how you can make use of each of the
topics covered. Source code in listings or in text appears in a fixed-width font like
this to separate it from ordinary text. In addition, class and method names, object
properties, and other code-related terms and content in text are presented using
fixed-width font.

Getting the source code
The code for the examples in this book is available for download from the publisher’s
website at www.manning.com/express-in-action and on GitHub at https://github.com/
EvanHahn/Express.js-in-Action-code/, where each chapter has a corresponding folder
that has runnable versions of most of the code in this book.

 There is also an unofficial repo that ports many of the book’s examples to Type-
Script if you prefer that. It is at https://github.com/panacloud/learn-typed-express. It
is unofficial, so your mileage may vary, but may be useful if you prefer TypeScript.

Author Online
Purchase of Express in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/express-in-action.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum. It also provides
links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
Licensed to <miler.888@gmail.com>

https://github.com/EvanHahn/Express.js-in-Action-code/
https://github.com/EvanHahn/Express.js-in-Action-code/
https://github.com/panacloud/learn-typed-express
http://www.manning.com/express-in-action
http://www.manning.com/express-in-action

ABOUT THIS BOOKxviii
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author challenging questions lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
Evan Hahn is a software engineer at Braintree where he works on JavaScript. He
authors and contributes to a number of open source Node.js packages. He is made of
flesh and bone.
Licensed to <miler.888@gmail.com>

about the cover illustration
The figure on the cover of Express in Action is captioned “Habit of Lady of
Indostan.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses
of Different Nations, Ancient and Modern (four volumes), London, published between
1757 and 1772. The title page states that these are hand-colored copperplate
engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called
“Geographer to King George III.” He was an English cartographer who was the
leading map supplier of his day. He engraved and printed maps for government
and other official bodies and produced a wide range of commercial maps and
atlases, especially of North America. His work as a map maker sparked an interest
in local dress customs of the lands he surveyed and mapped, which are brilliantly
displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.
xix

Licensed to <miler.888@gmail.com>

ABOUT THE COVER ILLUSTRATIONxx
 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.
Licensed to <miler.888@gmail.com>

Part 1

Intro

Welcome to Express in Action. This is the first of three parts and, like many
openers, it introduces the players.

 In chapter 1, I’ll identify the characters. Spoiler alert: they are Node.js and
Express. The former is a JavaScript runtime—a place where JavaScript code can
run—that’s attractive to a lot of developers. Node.js is powerful, but its APIs can,
at times, lack power and leave you writing a lot of boilerplate code; that’s where
Express struts onto the scene. It fits snugly into Node.js and makes it easier to
write web applications. You’ll learn all this and much more in chapter 1.

 In chapter 2 you’ll learn what it means for Node.js to be a JavaScript runtime,
and you’ll be running JavaScript in Node.js. You’ll build a couple of simple mod-
ules and then see what it takes to build a website on the platform. You’ll also
learn how to include third-party modules from npm, Node.js’s third-party pack-
age registry.

 The star of the show, Express, takes center stage in chapter 3. You’ll see how
Express sits on top of Node.js, and learn its major features. Express will show you
convenience after convenience. We’ll delve deeper into each of these features in
subsequent chapters, but by the end of chapter 3, you’ll have all of the core
Express knowledge you’ll need.

 I hope you are as excited as I to get started!
Licensed to <miler.888@gmail.com>

Licensed to <miler.888@gmail.com>

What is Express?
Before we talk about Express, we need to talk about Node.js.
 For most of its life, the JavaScript programming language has lived inside web

browsers. It started as a simple scripting language for modifying small details of
web pages but grew into a complex language, with loads of applications and
libraries. Many browser vendors like Mozilla and Google began to pump resources
into fast JavaScript runtimes, and browsers got much faster JavaScript engines as
a result.

 In 2009, Node.js came along. Node.js took V8, Google Chrome’s powerful Java-
Script engine, out of the browser and enabled it to run on servers. In the browser,

This chapter covers
■ Node.js, a JavaScript platform typically used

to run JavaScript on servers
■ Express, a framework that sits on top of

Node.js’s web server and makes it easier
to use

■ Middleware and routing, two features of
Express

■ Request handler functions
3

Licensed to <miler.888@gmail.com>

4 CHAPTER 1 What is Express?
developers had no choice but to pick JavaScript. In addition to Ruby, Python, C#, Java,
and other languages, developers could now choose JavaScript when developing server-
side applications.

 JavaScript might not be the perfect language for everyone, but Node.js has real
benefits. For one, the V8 JavaScript engine is fast, and Node.js encourages an asyn-
chronous coding style, making for faster code while avoiding multithreaded night-
mares. JavaScript also had a bevy of useful libraries because of its popularity. But the
biggest benefit of Node.js is the ability to share code between browser and server.
Developers don’t have to do any kind of context switch when going from client and
server. Now they can use the same code and the same coding paradigms between two
JavaScript runtimes: the browser and the server.

 Node.js caught on—people thought it was pretty cool. Like browser-based JavaScript,
Node.js provides a bevy of low-level features you’d need to build an application. But
like browser-based JavaScript, its low-level offerings can be verbose and difficult to use.

 Enter Express, a framework that acts as a light layer atop the Node.js web server,
making it more pleasant to develop Node.js web applications.

 Express is philosophically similar to jQuery. People want to add dynamic content
to their web pages, but the vanilla browser APIs can be verbose, confusing, and limited
in features. Developers often have to write boilerplate code, and a lot of it. jQuery
exists to cut down on this boilerplate code by simplifying the APIs of the browser and
adding helpful new features. That’s basically it.

 Express is exactly the same. People want to make web applications with Node.js,
but the vanilla Node.js APIs can be verbose, confusing, and limited in features. Devel-
opers often have to write a lot of boilerplate code. Express exists to cut down on this
boilerplate code by simplifying the APIs of Node.js and adding helpful new features.
That’s basically it!

 Like jQuery, Express aims to be extensible. It’s hands-off about most parts of your
applications’ decisions and is easily extended with third-party libraries. Throughout this
book and your Express career, you’ll have to make decisions about your applications’
architectures, and you’ll extend Express with a bevy of powerful third-party modules.

 You probably didn’t pick up this book for the “in short” definition, though. The
rest of this chapter (and book, really) will discuss Express in much more depth.

NOTE This book assumes that you’re proficient in JavaScript but not Node.js.

1.1 What is this Node.js business?
Node.js is not child’s play. When I first started using Node.js, I was confused. What is it?

 Node.js (often shortened to Node) is a JavaScript platform—a way to run JavaScript.
Most of the time, JavaScript is run in web browsers, but there’s nothing about the
JavaScript language that requires it to be run in a browser. It’s a programming lan-
guage just like Ruby or Python or C++ or PHP or Java. Sure, there are JavaScript run-
times bundled with all popular web browsers, but that doesn’t mean that it has to be
run there. If you were running a Python file called myfile.py, you would run python
Licensed to <miler.888@gmail.com>

5What is this Node.js business?
myfile.py. But you could write your own Python interpreter, call it SnakeWoman, and
run snakewoman myfile.py. Its developers did the same with Node.js; instead of typing
javascript myfile.js, you type node myfile.js.

 Running JavaScript outside the browser lets you do a lot—anything a regular pro-
gramming language could do, really—but it’s mostly used for web development.

 Okay, so you can run JavaScript on the server—why would you do this?
 A lot of developers will tell you that Node.js is fast, and that’s true. Node.js isn’t the

fastest thing on the market by any means, but it’s fast for two reasons.
 The first is pretty simple: the JavaScript engine is fast. It’s based on the engine used

in Google Chrome, which has a famously quick JavaScript engine. It can execute
JavaScript like there’s no tomorrow, processing thousands of instructions a second.

 The second reason for its speed lies in its ability to handle concurrency, and it’s a
bit less straightforward. Its performance comes from its asynchronous workings.

 The best real-world analogy I can come up with is baking. Let’s say I’m making
muffins. I have to prepare the batter and while I’m doing that, I can’t do anything
else. I can’t sit down and read a book, I can’t cook something else, and so on. But
once I put the muffins in the oven, I don’t have to stand there looking at the oven
until they’re done—I can do something else. Maybe I start preparing more batter.
Maybe I read a book. In any case, I don’t have to wait for the muffins to finish baking
for me to be able to do something else.

 In Node.js, a browser might request something from your server. You begin
responding to this request and another request comes in. Let’s say both requests have
to talk to an external database. You can ask the external database about the first
request, and while that external database is thinking, you can begin to respond to the
second request. Your code isn’t doing two things at once, but when someone else is
working on something, you’re not held up waiting.

 Other runtimes don’t have this luxury built in by default. Ruby on Rails, for exam-
ple, can process only one request at a time. To process more than one at a time, you
effectively have to buy more servers. (There are, of course, many asterisks to this claim.)

 Figure 1.1 demonstrates what this might look like.

An asynchronous world

Task #1 Task #2 Task #3

Task #1

Task #2

Task #3

An external resource

(database, oven, etc.)
Your code

A synchronous world

Figure 1.1 Comparing
asynchronous code (like
Node.js) to synchronous code.
Note that asynchronous code
can complete much faster, even
though you’re never executing
your code in parallel.
Licensed to <miler.888@gmail.com>

6 CHAPTER 1 What is Express?
I don’t mean to tell you that Node.js is the fastest in the world because of its asynchro-
nous capabilities. Node.js can squeeze a lot of performance out of one CPU core, but
it doesn’t excel with multiple cores. Other programming languages truly allow you to
actively do two things at once. To reuse the baking example: other programming lan-
guages let you buy more ovens so that you can bake more muffins simultaneously.
Node.js is beginning to support this functionality but it’s not as first-class in Node.js as
it is in other programming languages.

 Personally, I don’t believe that performance is the biggest reason to choose
Node.js. Although it’s often faster than other scripting languages like Ruby or Python, I
think the biggest reason is that it’s all one programming language.

 Often, when you’re writing a web application, you’ll be using JavaScript. But
before Node.js, you’d have to code everything in two different programming lan-
guages. You’d have to learn two different technologies, paradigms, and libraries. With
Node.js, a back-end developer can jump into front-end code and vice versa. Person-
ally, I think this is the most powerful feature of the runtime.

 Other people seem to agree: some developers have created the MEAN stack, which
is an all-JavaScript web application stack consisting of MongoDB (a database controlled
by JavaScript), Express, Angular.js (a front-end JavaScript framework), and Node.js.
The JavaScript everywhere mentality is a huge benefit of Node.js.

 Large companies such as Wal-Mart, the BBC, LinkedIn, and PayPal are even getting
behind Node.js. It’s not child’s play.

1.2 What is Express?
Express is a relatively small framework that sits on top of Node.js’s web server func-
tionality to simplify its APIs and add helpful new features. It makes it easier to orga-
nize your application’s functionality with middleware and routing; it adds helpful
utilities to Node.js’s HTTP objects; it facilitates the rendering of dynamic HTML views;
it defines an easily implemented extensibility standard. This book explores those fea-
tures in a lot more depth, so all of that lingo will be demystified soon.

1.2.1 The functionality in Node.js

When you’re creating a web application (to be more precise, a web server) in
Node.js, you write a single JavaScript function for your entire application. This func-
tion listens to a web browser’s requests, or the requests from a mobile application
consuming your API, or any other client talking to your server. When a request
comes in, this function will look at the request and determine how to respond. If you
visit the homepage in a web browser, for example, this function could determine
that you want the homepage and it will send back some HTML. If you send a message
to an API endpoint, this function could determine what you want and respond with
JSON (for example).
Licensed to <miler.888@gmail.com>

7What is Express?
 Imagine you’re writing a web application that tells users the time and time zone on
the server. It will work like this:

■ If the client requests the homepage, your application will return an HTML page
showing the time.

■ If the client requests anything else, your application will return an HTTP 404
“Not Found” error and some accompanying text.

If you were building your application on top of Node.js without Express, a client hit-
ting your server might look like figure 1.2.

The JavaScript function that processes browser requests in your application is called a
request handler. There’s nothing too special about this; it’s a JavaScript function that
takes the request, figures out what to do, and responds. Node.js’s HTTP server handles
the connection between the client and your JavaScript function so that you don’t have
to handle tricky network protocols.

 In code, it’s a function that takes two arguments: an object that represents the
request and an object that represents the response. In your time/time zone applica-
tion, the request handler function might check for the URL that the client is request-
ing. If they’re requesting the homepage, the request handler function should respond
with the current time in an HTML page. Otherwise, it should respond with a 404.
Every Node.js application is just like this: it’s a single request handler function
responding to requests. Conceptually, it’s pretty simple.

 The problem is that the Node.js APIs can get complex. Want to send a single JPEG
file? That’ll be about 45 lines of code. Want to create reusable HTML templates? Fig-
ure out how to do it yourself. Node.js’s HTTP server is powerful, but it’s missing a lot
of features that you might want if you were building a real application.

 Express was born to make it easier to write web applications with Node.js.

CLIENT

browser,

mobile app,

etc.

Client

requests

something

NODE’S

HTTP

SERVER

REQUEST

HANDLER

FUNCTION

Written

by you

HTTP server

hands request to

your function

Your function

hands response

to HTTP server

HTTP

server sends

response

Figure 1.2 The flow of a request through a Node.js web application.
Circles are written by you as the developer; squares are out of your domain.
Licensed to <miler.888@gmail.com>

8 CHAPTER 1 What is Express?
1.2.2 What Express adds to Node.js

In broad strokes, Express adds two big features to the Node.js HTTP server:

■ It adds a number of helpful conveniences to Node.js’s HTTP server, abstracting
away a lot of its complexity. For example, sending a single JPEG file is fairly com-
plex in raw Node.js (especially if you have performance in mind); Express
reduces it to one line.

■ It lets you refactor one monolithic request handler function into many smaller
request handlers that handle only specific bits and pieces. This is more main-
tainable and more modular.

In contrast to figure 1.2, figure 1.3 shows how a request would flow through an Express
application.

Figure 1.3 might look more complicated, but it’s much simpler for you as the devel-
oper. There are essentially two things going on here:

■ Rather than one large request handler function, Express has you writing
many smaller functions (many of which can be third-party functions and not
written by you). Some functions are executed for every request (for example,
a function that logs all requests), and other functions are only executed some-
times (for example, a function that handles only the homepage or the 404
page). Express has many utilities for partitioning these smaller request han-
dler functions.

■ Request handler functions take two arguments: the request and the response.
Node’s HTTP server provides some functionality; for example, Node.js’s HTTP
server lets you extract the browser’s user agent in one of its variables. Express
augments this by adding extra features such as easy access to the incoming
request’s IP address and improved parsing of URLs. The response object also
gets beefed up; Express adds things like the sendFile method, a one-line com-
mand that translates to about 45 lines of complicated file code. This makes it
easier to write these request handler functions.

Express adds

features to

the request

and response

Your functions respond

to the request

HTTP server

sends response

CLIENT

browser,

mobile app,

etc.

Client

requests

something

NODE’S

HTTP

SERVER

EXPRESS

APP

HTTP server

hands request

to Express

MIDDLEWARE

STACK

Figure 1.3 The flow of a request through an Express. Once again, circles are code you write and
squares are out of your domain.
Licensed to <miler.888@gmail.com>

9The core parts of Express
Instead of managing one monolithic request handler function with verbose Node.js
APIs, you write multiple small request handler functions that are made more pleasant
by Express and its easier APIs.

1.3 Express’s minimal philosophy
Express is a framework, which means you’ll have to build your app the Express way.
But the Express way isn’t too opinionated; it doesn’t give you a very rigid structure.
That means you can build many different kinds of applications, from video chat appli-
cations to blogs to APIs.

 It’s very rare to build an Express app of any size that uses only Express. Express by
itself probably doesn’t do everything you need, and you’ll likely find yourself with a
large number of other libraries that you integrate into your Express applications.
(We’ll look at many of these libraries throughout the book.) You can have exactly what
you need without any extra cruft, and it enables you to confidently understand every
part of your application. In this way, it lends itself well to the do-one-thing-well philos-
ophy from the Unix world.

 But this minimalism is a double-edged sword. It’s flexible and your apps are free of
unused cruft, but it does very little for you in comparison to other frameworks. This
means that you make mistakes, you have to make far more decisions about your appli-
cation’s architecture, and you have to spend more time hunting for the right third-
party modules. You get less out of the box.

 Some might like a flexible framework, others might want more rigidity. PayPal, for
instance, likes Express but built a framework on top of it that more strictly enforces
conventions for their many developers. Express doesn’t care how you structure your
apps, so two developers might make different decisions.

 Because you’re given the reins to steer your app in any direction, you might make
an unwise decision that’ll bite you later down the line. Sometimes, I look back on my
still-learning-Express applications and think, “Why did I do things this way?”

 To write less code yourself, you wind up hunting for the right third-party packages
to use. Sometimes, it’s easy—there’s one module that everyone loves and you love it
too and it’s a match made in heaven. Other times, it’s harder to choose, because there
are a lot of okay-ish ones or a small number of pretty good ones. A bigger framework
can save you that time and headache, and you’ll simply use what you’re given.

 There’s no right answer to this, and this book isn’t going to try to debate the ulti-
mate winner of the fight between big and small frameworks. But the fact of the matter
is that Express is a minimalist framework, for better or for worse!

1.4 The core parts of Express
All right, so Express is minimal, and it sugarcoats Node.js to make it easier to use. How
does it do that?

 When you get right down to it, Express has just four major features: middleware,
routing, subapplications, and conveniences. There’s a lot of conceptual stuff in the
Licensed to <miler.888@gmail.com>

10 CHAPTER 1 What is Express?
next few sections, but it’s not just hand-waving; we’ll get to the nitty-gritty details in the
following chapters.

1.4.1 Middleware

As you saw earlier, raw Node.js gives you one request handler function to work with.
The request comes into your function and the response goes out of your function.

 Middleware is poorly named, but it’s a term that’s not Express-specific and has been
around for a while. The idea is pretty simple: rather than one monolithic request han-
dler function, you call several request handler functions that each deal with a small
chunk of the work. These smaller request handler functions are called middleware func-
tions, or middleware.

 Middleware can handle tasks from logging requests to sending static files to setting
HTTP headers. The first middleware function you might use in an application is a log-
ger—it logs every request that comes into your server. When the logger has finished
logging, it will continue on to the next middleware in the chain. This next middleware
function might authenticate users. If they’re visiting a forbidden URL, it will respond
with a “not authorized” page. If they are allowed to visit it, they can continue to the
next function in the chain. The next function might send the homepage and be done.
An illustration of two possible options is shown in figure 1.4.

 In figure 1.4, the logging middleware is first in the chain and is always called, so
something will always be noted in the log file. Next, the logging middleware continues
to the next one in the chain, the authorization middleware. The authorization mid-
dleware decides, by some decree, whether the user is authorized to keep going. If they
are, the authorization middleware signals that it wants to continue on to the next mid-
dleware in the chain. Otherwise, the middleware sends a “you’re not authorized!”
message to the user and halts the chain. (This message could be an HTML page or a
JSON response or anything else, depending on the application.) The last middleware,

Request A

comes in

Logging done,

continue on

User is

authorized,

continue on.

Respond

with secret

infoLogging

middleware

Authorization

middleware

“Send the

secret info”

middleware

“Send the

secret info”

middleware

Request B

comes in

Logging done,

continue on

User is not

authorized,

respond with

error and do

not continue.

Logging

middleware

Authorization

middleware

Figure 1.4 Two requests flowing through middleware functions. Notice that middleware
sometimes continues on, but sometimes it responds to requests.
Licensed to <miler.888@gmail.com>

11The core parts of Express
if it’s called, will send secret information and not continue to any further middleware
in the chain. (Once again, this last middleware can send any kind of response, from
HTML to JSON to an image file.)

 One of the biggest features of middleware is that it’s relatively standardized, which
means that lots of people have developed middleware for Express (including folks on
the Express team). That means that if you can dream up the middleware, someone
has probably already made it. There’s middleware to compile static assets like LESS
and SCSS; there’s middleware for security and user authentication; there’s middleware
to parse cookies and sessions.

1.4.2 Routing

Routing is better named than middleware. Like middleware, it breaks the one mono-
lithic request handler function into smaller pieces. Unlike middleware, these request
handlers are executed conditionally, depending on what URL and HTTP method a cli-
ent sends.

 For example, you might build a web page with a homepage and a guestbook.
When the user sends an HTTP GET to the homepage URL, Express should send the
homepage. But when they visit the guestbook URL, it should send them the HTML for
the guestbook, not for the homepage! And if they post a comment in the guestbook
(with an HTTP POST to a particular URL), this should update the guestbook. Routing
allows you to partition your application’s behavior by route.

 The behavior of these routes is, like middleware, defined in request handler func-
tions. When the user visits the homepage, it will call a request handler function, writ-
ten by you. When the user visits the guestbook URL, it will call another request
handler function, also written by you.

 Express applications have middleware and routes; they complement one another.
For example, you might want to log all of the requests, but you’ll also want to serve the
homepage when the user asks for it.

1.4.3 Subapplications

Express applications can often be pretty small, even fitting in just one file. As your
applications get larger, though, you’ll want to break them up into multiple folders and
files. Express is unopinionated about how you scale your app, but it provides one
important feature that’s super helpful: subapplications. In Express lingo, these min-
iapplications are called routers.

 Express allows you to define routers that can be used in larger applications. Writ-
ing these subapplications is almost exactly like writing normal-sized ones, but it allows
you to further compartmentalize your app into smaller pieces. You might have an
administration panel in your app, and that can function differently from the rest of
your app. You could put the admin panel code side-by-side with the rest of your mid-
dleware and routes, but you can also create a subapplication for your admin panel.
Figure 1.5 shows how an Express application might be broken up with routers.
Licensed to <miler.888@gmail.com>

12 CHAPTER 1 What is Express?
This feature doesn’t really shine until your applications get large, but when they do,
it’s extraordinarily helpful.

1.4.4 Conveniences

Express applications are made up of middleware and routes, both of which have you
writing request handler functions, so you’ll be doing that a lot!

 To make these request handler functions easier to write, Express has added a
bunch of niceties. In raw Node.js, if you want to write a request handler function that
sends a JPEG file from a folder, that’s a fair bit of code. In Express, that’s only one call
to the sendFile method. Express has a bunch of functionality for rendering HTML
more easily; Node.js keeps mum. It also comes with myriad functions that make it eas-
ier to parse requests as they come in, like grabbing the client’s IP address.

 Unlike the previous features, these conveniences don’t conceptually change how
you organize your app, but they can be super helpful.

1.5 The ecosystem surrounding Express
Express, like any tool, doesn’t exist in a vacuum. It lives in the Node.js ecosystem, so
you have a bevy of third-party modules that can help you, such as interfaces with data-
bases. Because Express is extensible, lots of developers have made third-party modules
that work well with Express (rather than general Node.js), such as specialized middle-
ware or ways to render dynamic HTML.

1.5.1 Express vs. other web application frameworks

Express is hardly the first web application framework, nor will it be the last. And
Express isn’t the only framework in the Node.js world. Perhaps its biggest competitor
is Hapi.js, an unopinionated, relatively small framework that has routing and middle-
ware-like functionality. It’s different from Express in that it doesn’t aim to smooth out
Node.js’s built-in HTTP server module but to build a rather different architecture. It’s

Express

application

Admin

panel

router

API

version 1

router

API

router

Single-page

application

router

API

version 2

router

Figure 1.5 An example diagram
showing how a large application
could be broken up into routers
Licensed to <miler.888@gmail.com>

13The ecosystem surrounding Express
a pretty mature framework and it is used by Mozilla, OpenTable, and even the npm
registry. Although I doubt there’s much animosity between Express developers and
Hapi developers, Hapi is the biggest competitor to Express.

 There are larger frameworks in the Node.js world as well, perhaps the most popu-
lar of which is the full-stack Meteor. Express is unopinionated about how you build
your applications but Meteor has a strict structure. Express deals only with the HTTP
server layer; Meteor is full-stack, running code on both client and server. These are
simply design choices—one isn’t inherently better than the other.

 The same way Express piles features atop Node.js, some folks have decided to pile
features atop Express. Folks at PayPal created Kraken; although Kraken is technically
just Express middleware, it sets up a lot of your application, from security defaults to
bundled middleware. Sails.js is another up-and-coming framework built atop Express
that adds databases, WebSocket integration, API generators, an asset pipeline, and
more. Both of these frameworks are more opinionated than Express by design.

 Express has several features, just one of which is middleware. Connect is a web appli-
cation framework for Node.js that’s only the middleware layer. Connect doesn’t have
routing or conveniences; it’s just middleware. Express once used Connect for its middle-
ware layer, and although it now does middleware without Connect, Express middleware
is completely compatible with Connect middleware. That means that any middleware
that works in Connect also works in Express, which adds a huge number of helpful
third-party modules to your arsenal.

 This is JavaScript, so there are countless other Node.js web application frameworks
out there, and I’m sure I’ve offended someone by not mentioning theirs.

 Outside the Node.js world, there are comparable frameworks. Express was very
much inspired by Sinatra, a minimal web application framework from the Ruby world.
Sinatra, like Express, has routing and middleware-like functionality. Sinatra has
inspired many clones and reinterpretations of many other programming languages,
so if you’ve ever used Sinatra or a Sinatra-like framework, Express will seem familiar.
Express is also like Bottle and Flask from the Python world.

 Express isn’t as much like Python’s Django or Ruby on Rails or ASP.NET or Java’s
Play; those are larger, more opinionated frameworks with lots of features. Express is
also unlike PHP; although it is code running on the server, it’s not as tightly coupled
with HTML as vanilla PHP is.

 This book should tell you that Express is better than all of these other frameworks,
but it can’t—Express is simply one of the many ways to build a server-side web applica-
tion. It has real strengths that other frameworks don’t have, like Node.js’s perfor-
mance and the ubiquitous JavaScript, but it does less for you than a larger framework
might do, and some people don’t think JavaScript is the finest language out there. We
could argue forever about which is best and never come to an answer, but it’s impor-
tant to see where Express fits into the picture.
Licensed to <miler.888@gmail.com>

14 CHAPTER 1 What is Express?
1.5.2 What Express is used for

In theory, Express could be used to build any web application. It can process incoming
requests and respond to them, so it can do things that you can do in most of the other
frameworks mentioned earlier. Why would you choose Express over something else?

 One of the benefits of writing code in Node.js is the ability to share JavaScript code
between the browser and the server. This is helpful from a code perspective because
you can literally run the same code on client and server. It’s also very helpful from a
mental perspective; you don’t have to get your mind in server mode and then switch
into client mode—it’s all the same thing at some level. That means that a front-end
developer can write back-end code without having to learn a whole new language and
its paradigms, and vice-versa. There is some learning to do—this book wouldn’t exist
otherwise—but a lot of it is familiar to front-end web developers.

 Express helps you do this, and people have come up with a fancy name for one
arrangement of an all-JavaScript stack: the MEAN stack. Like the LAMP stack stands for
Linux, Apache, MySQL, and PHP, MEAN, as I mentioned earlier, stands for MongoDB
(a JavaScript-friendly database), Express, Angular (a front-end JavaScript framework),
and Node.js. People like the MEAN stack because it’s full-stack JavaScript and you get
all of the aforementioned benefits.

 Express is often used to power single-page applications (SPAs). SPAs are very
JavaScript-heavy on the front end, and they usually require a server component. The
server is usually required to simply serve the HTML, CSS, and JavaScript, but there’s
often a REST API, too. Express can do both of these things quite well; it’s great at serv-
ing HTML and other files, and it’s great at building APIs. Because the learning curve is
relatively low for front-end developers, they can whip up a simple SPA server with little
new learning required.

 When you write applications with Express, you can’t get away from using Node.js,
so you’re going to have the E and the N parts of the MEAN stack, but the other two
parts (M and A) are up to you because Express is unopinionated. Want to replace
Angular with Backbone.js on the front end? Now it’s the MEBN stack. Want to use SQL
instead of MongoDB? Now it’s the SEAN stack. Although MEAN is a common bit of
lingo thrown around and a popular configuration, you can choose whichever you
want. In this book, we’ll cover the MongoDB database, so we’ll use the MEN stack:
MongoDB, Express, and Node.js.

 Express also fits in side by side with a lot of real-time features. Although other pro-
gramming environments can support real-time features like WebSocket and WebRTC,
Node.js seems to get more of that than other languages and frameworks. That means that
you can use these features in Express apps; because Node.js gets it, Express gets it too.

1.5.3 Third-party modules for Node.js and Express

The first few chapters of this book talk about core Express—things that are baked into
the framework. In very broad strokes, these are routes and middleware. But more
than half of the book covers how to integrate Express with third-party modules.
Licensed to <miler.888@gmail.com>

15The ecosystem surrounding Express
 There are loads of third-party modules for Express. Some are made specifically
for Express and are compatible with its routing and middleware features. Others
aren’t made for Express specifically and work well in Node.js, so they also work well
with Express.

 In this book, we’ll pick a number of third-party integrations and show examples.
But because Express is unopinionated, none of the contents of this book are the only
options. If I cover Third-Party Tool X in this book, but you prefer Third-Party Tool Y,
you can swap them out.

 Express has some small features for rendering HTML. If you’ve ever used vanilla
PHP or a templating language like ERB, Jinja2, HAML, or Razor, you’ve dealt with ren-
dering HTML on the server. Express doesn’t come with any templating languages built
in, but it plays nicely with almost every Node.js-based templating engine, as you’ll see.
Some popular templating languages come with Express support, but others need a
simple helper library. In this book, we’ll look at two options: EJS (which looks a lot like
HTML) and Pug (which tries to fix HTML with a radical new syntax).

 Express doesn’t have any notion of a database. You can persist your application’s
data however you choose: in files, in a relational SQL database, or in another kind of
storage mechanism. In this book, we’ll cover the popular MongoDB database for
data storage. As we talked about earlier, you should never feel boxed in with Express.
If you want to use another data store, Express will let you.

 Users often want their applications to be secure. There are a number of helpful
libraries and modules (some for raw Node.js and some for Express) that can tighten
the belt of your Express applications. We’ll explore all of this in chapter 10 (which is
one of my favorite chapters, personally). We’ll also talk about testing your Express
code to make sure that the code powering your apps is robust.

 An important thing to note: there’s no such thing as an Express module—only a
Node.js module. A Node.js module can be compatible with Express and work well with
its API, but they’re all just JavaScript served from the npm registry, and you install
them the same way. Just like in other environments, some modules integrate with
other modules, where others can sit alongside. At the end of the day, Express is just a
Node.js module like any other.

Getting help when you need it
I really hope this book is helpful and chock-full of knowledge, but there’s only so much
wisdom one author can jam into a book. At some point, you’re going to need to
spread your wings and find answers. Let me do my best to guide you:

For API documentation and simple guides, the official http://expressjs.com/ site is
the place to go. You can also find example applications all throughout the Express
repository, at https://github.com/strongloop/express/tree/master/examples. I found
these examples helpful when trying to find the right way to do things. There are loads
of examples in there; check them out!
Licensed to <miler.888@gmail.com>

http://expressjs.com/
https://github.com/strongloop/express/tree/master/examples

16 CHAPTER 1 What is Express?
1.6 The obligatory Hello World
Every introduction to a new code thing needs a Hello World, right?

 Let’s look at one of the simplest Express applications you can build: the “Hello
World.” We’ll delve into this in much greater detail throughout the book, so don’t
worry if not all of this makes sense right now. Here’s Hello World in Express.

var express = require("express");

var app = express();

app.get("/", function(request, response) {
 response.send("Hello, world!");
});

app.listen(3000, function() {
 console.log("Express app started on port 3000.");
});

Once again, if not all of this makes sense to you, don’t worry. But you might be able to
see that you’re creating an Express application, defining a route that responds with
“Hello, world!”, and starting your app on port 3000. There are a few steps you’ll need
to do to run this—all of that will become clear in the next couple of chapters.

 You’ll learn all of Express’s secrets soon.

1.7 Summary
■ Node.js is a powerful tool for writing web applications, but it can be cumber-

some to do so. Express was made to smooth out that process.
■ Express is a minimal, unopinionated framework that’s flexible.

(continued)

For Node.js modules, you’ll be using Node.js’s built-in npm tool and installing things
from the registry at https://www.npmjs.com/. If you need help finding good modules,
I’d give Substack’s “finding modules” a read at http://substack.net/finding_modules.
It’s a great summary of how to find quality Node.js packages.

Express used to be built on another package called Connect, and it’s still largely com-
patible with Connect-made modules. If you can’t find a module for Express, you might
have luck searching for Connect. This also applies if you’re searching for answers to
questions. And as always, use your favorite search engine.

Listing 1.1 Hello World in Express

Requires Express and
puts it in a variable

Calls express() and puts
new Express application
inside the app variable

Sends “Hello,
world!”

Starts the Express server
on port 3000 and logs
that it has started
Licensed to <miler.888@gmail.com>

https://www.npmjs.com/
http://substack.net/finding_modules

17Summary
■ Express has a few key features:
– Middleware which is a way to break your app into smaller bits of behavior.

Generally, middleware is called one by one, in a sequence.
– Routing similarly breaks your app up into smaller functions that are exe-

cuted when the user visits a particular resource; for example, showing the
homepage when the user requests the homepage URL.

– Routers can further break up large applications into smaller, composable
subapplications.

■ Most of your Express code involves writing request handler functions, and
Express adds a number of conveniences when writing these.
Licensed to <miler.888@gmail.com>

The basics of Node.js
In chapter 1, we described Node.js, explaining that it’s JavaScript, asynchronous,
and has a rich set of third-party modules. If you’re like me, you didn’t totally under-
stand these things when you first started with Node. This chapter aims to give the
intro to Node that I wish I had: short and sweet. (From here forward, I’ll refer to
Node.js simply as Node.)

NOTE I’m assuming that you know a fair bit of JavaScript and that you
don’t want an extremely thorough knowledge of Node from this chapter.
I’m also going to assume that you have a working understanding of how to
use the command line. If this whirlwind introduction to Node is a little too

This chapter covers
■ Installing Node.js and using its module system
■ Using package.json to describe your project’s

metadata
■ Using npm to install packages with npm

install
■ Doing two things at once with Node
■ Using Node’s built-in http module to build a

simple web server
18

Licensed to <miler.888@gmail.com>

19Installing Node
whirlwind, I recommend Node.js in Action by Mike Cantelon, et al. (Manning
Publications, 2013) at www.manning.com/cantelon/.

Let’s get started.

2.1 Installing Node
A theme of the JavaScript world is an overwhelming number of choices, and Node’s
installation is no exception; there are numerous ways to get Node running on your
system.

 The official downloads page at http://nodejs.org/download/ has a number of
links for pretty much every platform—Windows, Mac, and Linux. The choice of plat-
form should be obvious—choose the one for your operating system. If you’re not sure
if your system is 32-bit or 64-bit, search the web for the answer because you’ll get a lot
of performance benefits from choosing 64-bit if it’s available. Mac and Windows users
have the option to download a binary or an installer, and I recommend the latter.

 If you have a package manager on your system, you can use that instead. Node is
available on package managers such as apt-get, Homebrew, and Chocolatey. You can
check out the official “Installing Node.js via package manager” guide at https://
github.com/joyent/node/wiki/Installing-Node.js-via-package-manager.

 If you’re on Mac or Linux, I highly recommend the Node Version Manager
(NVM), found at https://github.com/creationix/nvm. NVMW at https://github.com/
hakobera/nvmw is a port for Windows users. These programs allow you to easily
switch between Node versions, which is great if you want to have the stable version of
Node and the exciting experimental prerelease versions. It also allows you to easily
upgrade Node when new versions are released. NVM has a couple of other benefits
that I like, too: it’s trivial to uninstall, and it doesn’t need administrator (root) access
to install it on your system.

 NVM is a one-line install that you can copy-paste and run from the instructions at
https://github.com/creationix/nvm (or https://github.com/hakobera/nvmw for the
Windows version). In any case, install Node!

2.1.1 Running your first Node script

However you chose to install Node, it’s time to run something. Let’s build the classic
Hello World. Create a file called helloworld.js and put the following inside.

console.log("Hello, world!");

You call the console.log function with the argument you want to print: the string
"Hello, world!". If you’ve ever used the console when writing browser-based Java-
Script, this should look familiar.

Listing 2.1 helloworld.js
Licensed to <miler.888@gmail.com>

http://www.manning.com/cantelon/
http://nodejs.org/download/
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/creationix/nvm
https://github.com/hakobera/nvmw
https://github.com/hakobera/nvmw
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/creationix/nvm
https://github.com/hakobera/nvmw

20 CHAPTER 2 The basics of Node.js
 To run this, type node helloworld.js.
(You may have to cd into the directory where
helloworld.js lives.) If everything works well,
you should see the text appear on the screen.
The output will look something like figure 2.1.

2.2 Using modules
Most programming languages have a way of
including the code in file A from inside file
B so that you can split your code into multiple files. C and C++ have #include;
Python has import; Ruby and PHP have require. Some languages like C# do this
kind of cross-file communication implicitly at compile time.

 For most of its life, the JavaScript language didn’t have an official way of doing this.
To solve this problem, people built things that concatenated JavaScript files into one
file or built dependency loaders like RequireJS. A lot of web developers simply fill
their webpages with <script> tags.

 Node wanted to solve this problem elegantly, and its developers implemented a
standard module system called CommonJS. At its core, CommonJS lets you include code
from one file in another.

 There are three major components to this module system: requiring built-in mod-
ules, requiring third-party modules, and making your own modules. Let’s see how
they work.

2.2.1 Requiring built-in modules

Node has a number of built-in modules, ranging from filesystem access in a module
called fs to utility functions in a built-in module called util.

 A common task when building web applications with Node is parsing the URL.
When a browser sends a request to your server, it will ask for a specific URL, such as
the homepage or the about page. These URLs come in as strings, but you’ll often want
to parse them to get more information about them. Node has a built-in URL parser
module; let’s use it to see how to require packages.

 Node’s built-in url module exposes a few functions, but the big kahuna is a func-
tion called parse. It takes a URL string and extracts useful information, like the domain
or the path.

 You’ll use Node’s require function to use the url module. require is similar to
keywords like import or include in other languages. require takes the name of a
package as a string argument and returns a package. There’s nothing special about
the object that’s returned—it’s often an object, but it could be a function or a string
or a number. The next listing shows how you might use the url module.

Figure 2.1 The result of running our “Hello,
world!” code
Licensed to <miler.888@gmail.com>

21Using modules
var url = require("url");
var parsedURL = url.parse("http://www.example.com/
 ➥ profile?name=barry");

console.log(parsedURL.protocol); // "http:"
console.log(parsedURL.host); // "www.example.com"
console.log(parsedURL.query); // "name=barry"

In this example, require("url") returns an object that has the parse function
attached. Then you can use it as you would any object!

 If you save this as url-test.js, you can run it with node url-test.js. It will print the
protocol, host, and query of the example URL.

 Most of the time when you’re requiring a module, you’ll put in a variable that has
the same name as the module itself. The previous example puts the url module in a
variable of the same name: url.

 But you don’t have to do that. You could have put it in a variable with a different
name, if you wanted. The following listing illustrates that.

var theURLModule = require("url");

var parsedURL = theURLModule.parse("http://example.com");
// …

It’s a loose convention to give the variables the same name as what you’re requiring to
prevent confusion, but there’s nothing enforcing that in code.

2.2.2 Requiring third-party modules with package.json and npm

Node has several built-in modules, but they’re rarely enough; third-party packages are
indispensable when making applications. And this is a book about a third-party mod-
ule, after all, so you should definitely know how to use them!

 The first thing we need to talk about is package.json. Every Node project sits in a
folder, and at the root of every Node project there’s a file called package.json. (When
I say “every Node project,” I mean every single one, from third-party packages to appli-
cations. You’ll likely never build a Node project without one.)

 “package dot json” is a pretty simple JSON file that defines project metadata like
the name of the project, its version, and its authors. It also defines the project’s
dependencies.

 Let’s make a simple app. Make a new folder and save the following code to pack-
age.json.

Listing 2.2 Requiring Node’s url module

Listing 2.3 Requiring things into different variable names

Requires a url module and
puts it in a url variable

Uses the parse
function of the
url module
Licensed to <miler.888@gmail.com>

22 CHAPTER 2 The basics of Node.js
{
 "name": "my-fun-project",
 "author": "Evan Hahn",
 "private": true,
 "version": "0.2.0",
 "dependencies": {}
}

Now that you’ve defined your package, you can install its dependencies. When you
install Node, you actually get two programs: Node (as you might expect) and some-
thing called npm (deliberately lowercase). npm is an official helper for Node that
helps you with your Node projects.

 npm is often called the “Node Package Manager,” but its unabbreviated name has
never been explicitly stated—its website randomly shows names like “Never Poke Mon-
keys” or “Nine Putrid Mangos.” It may evade the “package manager” moniker because
it does much more than that, but package management is perhaps its biggest feature,
which you’ll use now.

 Let’s say you want to use Mustache (see https://mustache.github.io/), a little tem-
plating system. It lets you turn template strings into real strings. An example explains
it best; see the following listing.

Mustache.render("Hello, {{first}} {{last}}!", {
 first: "Nicolas",
 last: "Cage"
});

Mustache.render("Hello, {{first}} {{last}}!", {
 first: "Sheryl",
 last: "Sandberg"
});

Let’s say that you want to write a simple Node application that greets Nicolas Cage
with the Mustache module.

 From the root of this directory, run npm install mustache --save. (You must run
this command from the root of this directory so that npm knows where to put things.)
This command creates a folder in this directory called node_modules. Then it
downloads the latest version of the Mustache package and puts it into this new
node_modules folder (look inside to check it out). The --save flag adds it to your

Listing 2.4 A simple package.json file

Listing 2.5 An example of the Mustache templating system

Defines the
project’s name Defines the

author or authors

Marks this project
as private

Defines the
package’s version

This project has no
dependencies. We’ll

install some soon.

Returns "Hello,
Nicolas Cage!"

Returns "Hello,
Sheryl Sandberg!"
Licensed to <miler.888@gmail.com>

https://mustache.github.io/

23Using modules
package.json. Your package.json file should look similar to the one in the next listing,
but it will now have the latest version of the Mustache package.

{
 "name": "my-fun-project",
 "author": "Evan Hahn",
 "private": true,
 "version": "0.2.0",
 "dependencies": {
 "mustache": "^2.0.0"
 }
}

If you left off the --save flag, you’d see the new node_modules folder and it would
have Mustache inside, but nothing would be present in your package.json. The reason
you want dependencies listed in your package.json is so that someone else can install
the dependencies later if you give them the project—they need only to run npm
install with no arguments. Node projects typically have dependencies listed in their
package.json but they don’t come with the actual dependency files (they don’t include
the node_modules folder).

 Now that you’ve installed it, you can use the Mustache module from your code, as
shown in the listing that follows.

var Mustache = require("mustache");
var result = Mustache.render("Hi, {{first}} {{last}}!", {
 first: "Nicolas",
 last: "Cage"
});
console.log(result);

Save this code mustache-test.js and run it with node mustache-test.js. You should
see the text “Hi, Nicolas Cage!” appear.

 And that’s it! Once it’s installed into node_modules, you can use Mustache just like
you would a built-in module. Node knows how to require modules inside the
node_modules folder.

 When you’re adding dependencies, you can also manually edit package.json and
then run npm install. You can also install specific versions of dependencies or install
them from places other than the official npm registry; see more at the npm install
documentation (https://docs.npmjs.com/cli/install).

Listing 2.6 A simple package.json file

Listing 2.7 Using the Mustache module

Your dependency
version may be
newer than this.

You require
Mustache—just
like a built-in
module.
Licensed to <miler.888@gmail.com>

https://docs.npmjs.com/cli/install

24 CHAPTER 2 The basics of Node.js
2.2.3 Defining your own modules

We’ve been using other people’s modules for this whole chapter—you’ll now learn
how to define your own. Let’s say you want a function that returns a random integer
between 0 and 100. Without any module magic, that function might look like the
next listing.

var MAX = 100;

function randomInteger() {
 return Math.floor((Math.random() * MAX));
}

This shouldn’t be too earth-shattering; this might be how you’d write that function in
a browser context. But in Node, you can’t save this into a file and call it a day; you
need to choose a variable to export, so that when other files require this one, they
know what to grab. In this case, you’ll be exporting randomInteger. Try saving this
into a file called random-integer.js, as shown next.

var MAX = 100;

function randomInteger() {
 return Math.floor((Math.random() * MAX));
}

module.exports = randomInteger;

The last line is the only thing that might be foreign to someone new to Node. You can
export only one variable, and you’ll choose it by setting module.exports to it. In this
case, the variable you’re exporting is a function. In this module, MAX is not exported,
so that variable won’t be available to anyone who requires this file. Nobody will be able
to require it—it’ll stay private to the module.

npm init
npm does much more than just install dependencies. For example, it allows you to
autogenerate your package.json file. You can create package.json by hand, but npm
can do it for you.

In your new project directory, you can type npm init. It will ask you a bunch of ques-
tions about your project—project name, author, version—and when it’s finished, it
will save a new package.json. There’s nothing sacred about this generated file; you
can change it all you want. But npm can save you a bit of time when creating these
package.json files.

Listing 2.8 A function that returns a random integer between 0 and 100

Listing 2.9 random-integer.js

Exports the module
for other files
Licensed to <miler.888@gmail.com>

25Node: an asynchronous world
REMEMBER module.exports can be anything you want. Anything to which
you can assign a variable can be assigned to module.exports. It’s a function
in this example, but it’s often an object. It could even be a string or a number
or an array if you’d like.

Now, let’s say you want to use your new module. In the same directory as random-
integer.js, save a new file, as shown in the next listing. It doesn’t matter what you call it
(so long as it’s not random-integer.js), so let’s call it print-three-random-integers.js.

var randomInt = require("./random-integer");
console.log(randomInt()); // 12
console.log(randomInt()); // 77
console.log(randomInt()); // 8

You can now require it just like any other module, but you have to specify the path
using the dot syntax. Other than that, it’s exactly the same! You can use it as you would
another module.

 You can run this code just like any other, by running node print-three-random-
integers.js. If you did everything correctly, it’ll print three random numbers
between 0 and 100.

 You might try running node random-integer.js, and you’ll notice that it doesn’t
appear to do anything. It exports a module, but defining a function doesn’t mean the
function will run and print anything to the screen.

NOTE This book only covers making local modules within a project. If you’re
interested in publishing open source packages for everyone to use, check out
the guide on my website at http://evanhahn.com/make-an-npm-baby.

That’s a quick intro to Node’s module system.

2.3 Node: an asynchronous world
In chapter 1, we discussed the asynchronous nature of Node. I used a “let’s bake muf-
fins” analogy. While I’m preparing the batter for my muffins, I can’t do other substan-
tive things: I can’t read a book, I can’t prepare more batter, and so on. But once I put
the muffins in the oven, I can do other things. I don’t just stand there staring at the
oven until it beeps—I could go for a jog. When the oven beeps, I’m back on muffin
duty and I’m occupied again.

 A key point here is that I’m never doing two things at once. Even if multiple things
are happening at once (I could be jogging while the muffins are baking), I’m doing
only one thing at a time. This is because the oven isn’t me—it’s an external resource;
see figure 2.2.

 Node’s asynchronous model works similarly. A browser might request a 100 MB cat
picture from your Node-powered web server. You begin to load this big photo from

Listing 2.10 Using our module from another file

A relative
path
Licensed to <miler.888@gmail.com>

http://evanhahn.com/make-an-npm-baby

26 CHAPTER 2 The basics of Node.js

Requ
No

filesys
mo
the hard disk. As far as you’re concerned, the hard disk is an external resource, so you
ask it for the file and then you can move on to other things while you wait for it to load.

 While you’re loading that file, a second request comes in. You don’t have to wait
for the first request to finish completely—while you’re waiting for the hard disk to fin-
ish what it was working on, you can start parsing the second request. Once again,
Node is never really doing two things at once, but when an external resource is work-
ing on something, you’re not held up waiting.

 The two most common external resources you’ll deal with in Express are

■ Anything involving the filesystem—Like reading and writing files from your hard
drive

■ Anything involving a network—Like receiving requests, sending responses, or
sending your own requests over the internet

Conceptually, that’s about it.
 In code, these asynchronous things are handled by callbacks. You’ve probably

done something like this if you’ve ever done an AJAX request on a web page; you send
a request and pass a callback. When the browser has finished your request, it’ll call
your callback. Node works the same way.

 Let’s say you’re reading a file called myfile.txt from disk. When you’ve finished
reading the whole file, you want to print the number of times the letter X appears in
the file. The next listing shows how that might work.

var fs = require("fs");

var options = { encoding: "utf-8" };
fs.readFile("myfile.txt", options, function(err, data) {
 if (err) {
 console.error("Error reading file!");
 return;
 }

Listing 2.11 Reading a file from disk

An asynchronous world

Task #1 Task #2 Task #3

Task #1

Task #2

Task #3

An external resource

(database, oven, etc.)
Your code

A synchronous world

Figure 2.2 Comparing an
asynchronous world (like
Node) to a synchronous one

ires
de’s
tem
dule b

Reads myfile.txt
(and interprets the
bytes as UTF-8)

 c

Handles any errors
encountered when
reading the file

 d
Licensed to <miler.888@gmail.com>

27Node: an asynchronous world
 console.log(data.match(/x/gi).length + " letter X's");
});

Let’s step through this code. You require Node’s built-in filesystem module B. This
has tons of functions for various tasks on the filesystem, most commonly reading and
writing files. In this example, you’ll use its readFile method.

 Next, you set options that you’ll pass into fs.readFile. You call it with the file-
name (myfile.txt) c, the options you just created, and a callback. When the file has
been read off of disk, Node will jump into your callback.

 Most callbacks in Node are called with an error as their first argument. If all goes
well, the err argument will be null. But if things don’t go so well (maybe the file
didn’t exist or was corrupted) d, the err argument will have some value. It’s a best
practice to handle those errors. Sometimes the errors don’t completely halt your pro-
gram and you can continue on, but you often handle the error and then break out of
the callback by throwing an error or returning. This is a common Node practice, and
you’ll see it almost everywhere you see a callback.

 Once you know you don’t have any errors, you print out the number of Xs e in
the file. You use a little regular expression trick to do this.

 Okay, pop quiz: what would happen if you added a console.log statement at the
very end of this file, like the one shown in the next listing?

var fs = require("fs");

vra options = { encoding: "utf-8" };
fs.readFile("myfile.txt", options, function(err, data) {
 // …
});

console.log("Hello world!");

Because this file-reading operation is asynchronous, you’ll see “Hello world!” before
you see any results from the file. This is because the external resource—the filesys-
tem—hasn’t gotten back to you yet.

 This is how Node’s asynchronous model can be super helpful. While an external
resource is handling something, you can continue on to other code. In the context of
web applications, that means that you can parse many more requests at once.

NOTE There’s a fantastic video on how callbacks and the event loop work in
JavaScript (both in Node and in the browsers). If you’re interested in under-
standing the nitty-gritty details, I very strongly recommend Philip Roberts’s
“What the heck is the event loop anyway?” at https://www.youtube.com/
watch?v= 8aGhZQkoFbQ.

Listing 2.12 Adding a console.log after the asynchronous operations

Prints the number
of Xs by using a
regular expression e

Note the added
line here
Licensed to <miler.888@gmail.com>

https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://www.youtube.com/watch?v=8aGhZQkoFbQ

28 CHAPTER 2 The basics of Node.js
2.4 Building a web server with Node: the http module
Understanding the big concepts in Node will help you understand the built-in mod-
ule that’s most important to Express: its http module. It’s the module that makes it
possible to develop web servers with Node, and it’s what Express is built on.

 Node’s http module has various features (making requests to other servers, for
instance) but we’ll use its HTTP server component: a function called http.create-
Server. This function takes a callback that’s called every time a request comes into
your server, and it returns a server object. The following listing contains a very simple
server that sends “Hello world” with every request (which you can save into myserver.js
if you’d like to run it).

var http = require("http");

function requestHandler(request, response) {
 console.log("In comes a request to: " + request.url);
 response.end("Hello, world!");
}

var server = http.createServer(requestHandler);

server.listen(3000);

This code is split up into four chunks. The first chunk requires the http module and
puts it into a variable called http. You saw this previously with the url module and the
filesystem module—this is exactly the same.

 Next, you define a request handler function. Nearly every bit of code in this book is
either a request handler function or a way to call one, so listen up! These request han-
dler functions take two arguments: an object that represents the request (often short-
ened to req) and an object that represents the response (often shortened to res).
The request object has things like the URL that the browser requested (did they
request the homepage or the about page?), or the type of browser visiting your page
(called the user-agent), or things like that. You call methods on the response object
and Node will package the bytes and send them across the internet.

 The rest of the code points Node’s built-in HTTP server at the request handler
function and starts it on port 3000.

WHAT ABOUT HTTPS? Node also comes with a module called https. It’s very
similar to the http module, and creating a web server with it is almost identi-
cal. If you decide to swap things out later, it should take less than two minutes
if you know how to use HTTPS. If you don’t know much about HTTPS, don’t
worry about this.

Listing 2.13 A simple “hello world” web server with Node

Requires Node’s built-
in http module

Defines a function
that’ll handle
incoming HTTP
requests

Creates a server that
uses your function to
handle requestsStarts the server

listening on port 3000
Licensed to <miler.888@gmail.com>

29Building a web server with Node: the http module
You can try saving the previous code into a file called myserver.js. To run the server, type
node myserver.js (or just node myserver). Now, if you visit http://localhost:3000 in
your browser, you’ll see something like figure 2.3.

You’ll also notice that something appears in your console every time you visit a page.
Try visiting a few other URLs: http://localhost:3000/ or http://localhost:3000/hello/
world or http://localhost:3000/what?is=anime. The output will change in the console,
but your server won’t do anything different and will always just say “Hello, world!” Fig-
ure 2.4 shows what your console might look like.

Notice that the request URL doesn’t include “localhost:3000” anywhere. That might
be a little unintuitive, but this is pretty helpful, as it turns out. This allows you to deploy
your application anywhere, from your local server to your favorite .com address. It’ll
work without any changes.

 You could imagine parsing the request URL. You might do something like the fol-
lowing listing.

// …

function requestHandler(req, res) {
 if (req.url === "/") {
 res.end("Welcome to the homepage!");
 } else if (req.url === "/about") {
 res.end("Welcome to the about page!");
 } else {
 res.end("Error! File not found.");

Listing 2.14 Parsing the request URL with a request handler function

Figure 2.3 A simple
Hello World app

Figure 2.4 The console from
your Hello World app might
look something like this.
Licensed to <miler.888@gmail.com>

http://localhost:3000
http://localhost:3000/
http://localhost:3000/hello/world
http://localhost:3000/hello/world
http://localhost:3000/what?is=anime

30 CHAPTER 2 The basics of Node.js
 }
}

// …

You could imagine building your entire site in this one request handler function. For
very small sites, this might be easy, but you could see this function getting huge and
unwieldy pretty quickly. You might want a framework to help you clean up this HTTP
server—things could get messy! That’s where Express will come in.

2.5 Summary
■ There are a number of ways to install Node. I recommend using a version man-

ager so that you can easily change versions and upgrade as needed.
■ Node’s module system makes use of a global function called require and a

global object called module.exports. The two make for a straightforward mod-
ule system.

■ You can use npm to install third-party packages from the npm registry.
■ Node.js has evented I/O. This means that when an event happens (such as an

incoming web request), a function (or set of functions) is called.
■ Node has a built-in module called http. It is useful for building web applications.
Licensed to <miler.888@gmail.com>

Foundations of Express
As you saw in the previous chapter, Node.js comes with a number of built-in mod-
ules, one of which is called http. Node’s http module allows you to build an HTTP
server that responds to HTTP requests from browsers (and more). In short, the http
module lets you build websites with Node.

 Although you can build full web servers with nothing but Node’s built-in http
module, you might not want to. As we discussed in chapter 1 and as you saw in
chapter 2, the API exposed by the http module is pretty minimal and doesn’t do a
lot of heavy lifting for you.

 That’s where Express comes in: it’s a helpful third-party module (that is, not
bundled with Node). When you get right down to it, Express is an abstraction layer

This chapter covers
■ The four main features of Express:

– Middleware for letting a request flow
through multiple headers

– Routing for handling a request at a
specific spot

– Convenience methods and properties

– Views for dynamically rendering HTML
31

Licensed to <miler.888@gmail.com>

32 CHAPTER 3 Foundations of Express
on top of Node’s built-in HTTP server. You could, in theory, write everything with plain
vanilla Node and never touch Express. But as you’ll see, Express smooths out a lot of
the difficult parts and says “Don’t worry; you don’t need to deal with this ugly part. I’ll
handle this!” In other words, it’s magic!

 In this chapter, we’ll build on your Node knowledge and make an effort to really
understand Express. We’ll talk about its relationship to bare Node, discuss the con-
cepts of middleware and routing, and teach you about the other nice features Express
provides. In future chapters, we’ll go more in depth; this chapter will give a code-
heavy overview of the framework.

 At a high level, Express provides four major features, which you’ll be learning
about in this chapter:

■ Middleware—In contrast to vanilla Node, where your requests flow through only
one function, Express has a middleware stack, which is effectively an array of
functions.

■ Routing—Routing is a lot like middleware, but the functions are called only when
you visit a specific URL with a specific HTTP method. For example, you could only
run a request handler when the browser visits yourwebsite.com/about.

■ Extensions to request and response objects—Express extends the request and response
objects with extra methods and properties for developer convenience.

■ Views—Views allow you to dynamically render HTML. This both allows you to
change the HTML on the fly and to write the HTML in other languages.

You’ll build a simple guestbook in this chapter to get a feel for these four features.

3.1 Middleware
One of Express’s biggest features is called middleware. Middleware is very similar to
the request handlers you saw in vanilla Node (accepting a request and sending back a
response), but middleware has one important difference: rather than having just one
handler, middleware allows for many to happen in sequence.

 Middleware has a variety of applications, which we’ll explore in this section. For
example, one middleware could log all requests and then continue onto another mid-
dleware that sets special HTTP headers for every request, which could then continue
farther. Although you could do this with one large request handler, you’ll see that it’s
often preferable to decompose these disparate tasks into separate middleware func-
tions. If this is confusing now, don’t worry—we’ll have some helpful diagrams and get
into some concrete examples.

ANALOGS IN OTHER FRAMEWORKS Middleware isn’t unique to Express; it’s
present in a lot of other places in different forms. Middleware is present in
other web application frameworks like Python’s Django or PHP’s Laravel.
Ruby web applications also have this concept, often called Rack middleware.
This concept may not be radically new to you, though Express has its own fla-
vor of middleware.
Licensed to <miler.888@gmail.com>

http://yourwebsite.com/about

33Middleware
Let’s start rewriting the Hello World application using Express’s middleware feature.
You’ll see that it has far fewer lines of code, which can help speed up development
time and reduce the number of potential bugs.

3.1.1 Hello World with Express

Let’s set up a new Express project. Make a new directory and put a file called
package.json inside. Recall that package.json is how you store information about a
Node project. It lists simple data like the project’s name and author, and it contains
information about its dependencies. Start with a skeleton package.json, as shown in
the following listing.

{
 "name": "hello-world",
 "author": "Your Name Here!",
 "private": true,
 "dependencies": {}
}

Install Express and save it to your package.json:

npm install express --save

Running this command will find Express in the directory of third-party Node pack-
ages and fetch the latest version. It will put it in a folder called node_modules. Adding
--save to the installation command will save it under the dependencies key of pack-
age.json. After running this command, your package.json will look something like the
next listing.

{
 "name": "hello-world",
 "author": "Your Name Here!",
 "private": true,
 "dependencies": {
 "express": "^5.0.0"
 }
}

All right, now you’re ready. Save this file into app.js, as in the following listing.

var express = require("express");
var http = require("http");

var app = express();

Listing 3.1 A bare-bones package.json

Listing 3.2 package.json after installing Express with the --save flag

Listing 3.3 Hello, World with Express

Requires the Express
module just as you
require other modulesCalls the express

function to start a new
Express application
Licensed to <miler.888@gmail.com>

34 CHAPTER 3 Foundations of Express
app.use(function(request, response) {
 console.log("In comes a request to: " + request.url);
 response.end("Hello, world!");
});

http.createServer(app).listen(3000);

Now let’s step through this. First, you require Express. You then require Node’s http
module just as you did before. You’re ready.

 Then you make a variable called app as you did before, but instead of creating the
server, you call express(), which returns a request handler function. This is impor-
tant: it means that you can pass the result into http.createServer just like before.

 Remember the request handler we had in the previous chapter, with vanilla Node?
It looked like this:

function requestHandler(request, response) {
 console.log("In comes a request to: " + request.url);
 response.end("Hello, world!");
}

We have a similar function in this example (in fact, I copy-pasted it). It’s also passed a
request and a response object, and you interact with them in the same way.

 Next, you create the server and start listening. Recall that http.createServer took
a function before, so guess what—app is just a function. It’s an Express-made request
handler that starts going through all the middleware until the end. At the end of the
day, it’s just a request handler function like before.

NOTE You’ll see people using app.listen(3000), which defers to http.create-
Server. app.listen is just shorthand, like how you’ll shorten request to req
and response to res in following chapters.

3.1.2 How middleware works at a high level

In Node’s HTTP server, every request goes through one big function. This looks like
the following listing.

function requestHandler(request, response) {
 console.log("In comes a request to: " + request.url);
 response.end("Hello, world!");
}

In a world without middleware, you’d find yourself having one master request func-
tion that handles everything. If you were to draw the flow of your application, it might
look like figure 3.1.

Listing 3.4 A Node request handler function

Middleware

Starts the server

Request Request handler function Response Figure 3.1 A request
without middleware
Licensed to <miler.888@gmail.com>

35Middleware
Every request goes through just one request handler function, which eventually gen-
erates the response. That’s not to say that the master handler function can’t call other
functions, but at the end of the day, the master function responds to every request.

 With middleware, rather than having your request pass through one function you
write, it passes through an array of functions you write called a middleware stack. It
might look like figure 3.2.

Okay, so Express lets you execute an array of functions instead of only one. What
might some of these functions be? And why might you want this?

 Let’s take another look at an example from chapter 1: an application that authen-
ticates users. If they’re authenticated, it shows them secret information. All the while,
your server is logging every request that comes into your server, authenticated or not.

 This app might have three middleware functions: one that does logging, one that
does authentication, and one that responds with secret information. The logging mid-
dleware will log every request and continue on to the next middleware; the authentica-
tion middleware will continue only if the user is authorized; the final middleware will
always respond, and it won’t continue on because nothing follows it.

 There are two possible ways a request could flow through this simple app, as shown
in figure 3.3.

Request
Array of

request handler functions
Response

Middleware #1

Middleware #2

Middleware #3

...

Figure 3.2 A request
with middleware

Request A

comes in

Logging done,

continue on

User is

authorized,

continue on.

Respond

with secret

info.Logging

middleware

Authorization

middleware

“Send the

secret info”

middleware

“Send the

secret info”

middleware

Request B

comes in

Logging done,

continue on

User is not

authorized,

respond with

error and do

not continue.

Logging

middleware

Authorization

middleware

Figure 3.3 Two requests flowing through middleware functions. Note that middleware
sometimes continues on but sometimes responds to requests.
Licensed to <miler.888@gmail.com>

36 CHAPTER 3 Foundations of Express
Each middleware function can modify the request or the response, but it doesn’t
always have to. Eventually, some middleware should respond to the request. It could be
the first one; it could be the last. If none of them respond, then the server will hang
and the browser will sit alone, without a response.

 This is powerful because you can split your application into many small parts,
rather than having one behemoth. These components become easier to compose and
reorder, and it’s also easy to pull in third-party middleware.

 You’ll see examples that will (hopefully!) make all of this clearer.

3.1.3 Middleware code that’s passive

Middleware can affect the response, but it doesn’t have to. For example, the logging
middleware from the previous section doesn’t need to send different data—it only
needs to log the request and move on.

 Let’s start by building a completely useless middleware function and then move on
from there. The next listing shows what an empty middleware function looks like.

function myFunMiddleware(request, response, next) {

 ...

 next();
}

When you start a server, you start at the topmost middleware and work your way to
the bottom. So if you wanted to add simple logging to our app, you could do it, as
shown next.

var express = require("express");
var http = require("http");
var app = express();

app.use(function(request, response, next) {
 console.log("In comes a " + request.method + " to " + request.url);
 next();
});

app.use(function(request, response) {
 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("Hello, world!");
});

http.createServer(app).listen(3000);

Listing 3.5 Empty middleware that does nothing

Listing 3.6 Logging middleware

Does stuff with the
request and/or
responseWhen finished, calls

next() to defer to the next
middleware in the chain

The logging
middleware

Sends the
actual response
Licensed to <miler.888@gmail.com>

37Middleware
Run this app and visit http://localhost:3000. In the console, you’ll see that your
server is logging your requests (refresh to see). You’ll also see your “Hello, world!”
in the browser.

 Note that anything that works in the vanilla Node server also works in middleware.
For example, you can inspect request.method in a vanilla Node web server, without
Express. Express doesn’t get rid of it—it’s right there as it was before. If you want to set
the statusCode of the response, you can do that too. Express adds some more things
to these objects, but it doesn’t remove anything.

 The previous example shows middleware that doesn’t change the request or the
response—it logs the request and always continues. Although this kind of middleware
can be useful, middleware can also change the request or response objects.

3.1.4 Middleware code that changes the request and response

Not all middleware should be passive, though—the rest of the middleware from our
example doesn’t work that way; they actually need to change the response.

 Let’s try writing the authentication middleware that we mentioned before. We’ll
choose a weird authentication scheme for simplicity: you’re only authenticated if you
visit on an even-numbered minute of the hour (which would be 12:00, 12:02, 12:04,
12:06, and so on). Recall that you can use the modulo operator (%) to help determine
whether a number is divisible by another. You add this middleware to your application
in the next listing.

app.use(function(request, response, next) {
 console.log("In comes a " + request.method + " to " + request.url);
 next();
});

app.use(function(request, response, next) {
 var minute = (new Date()).getMinutes();
 if ((minute % 2) === 0) {
 next();
 } else {
 response.statusCode = 403;
 response.end("Not authorized.");
 }
});

app.use(function(request, response) {
 response.end('Secret info: the password is "swordfish"!');
});

When a request comes in, it will always go through the middleware in the same order
in which you use them. First, it will start with the logging middleware. Then, if you’re
visiting in an even-numbered minute, you’ll continue on to the next middleware and

Listing 3.7 Adding fake authentication middleware

The logging middleware,
just as before

If visiting at the first
minute of the hour,
calls next() to
continue on

If not authorized, sends a 403
status code and responds

Sends the
secret
information
Licensed to <miler.888@gmail.com>

http://localhost:3000

38 CHAPTER 3 Foundations of Express
see the secret information. But if you’re visiting at any of the other minutes of the
hour, you’ll stop and never continue on.

3.1.5 Third-party middleware libraries

Like many parts of programming, it’s often the case that someone else has done what
you’re trying to do. You can write your own middleware, but it’s common to find that
the functionality you want is already available in somebody else’s middleware. Let’s
look at a couple of examples of helpful third-party middleware.

MORGAN: LOGGING MIDDLEWARE

Let’s remove your logger and use Morgan, a nice logger for Express that has far more
features, as shown in listing 3.8. Loggers are pretty helpful for a number of reasons.
First, they’re one way to see what your users are doing. This isn’t the best way to do
things like marketing analytics, but it’s really useful when your app crashes for a user
and you’re not sure why. I also find it helpful when developing—you can see when a
request comes into your server. If something is wrong, you can use Morgan’s logging
as a sanity check. You can also see how long your server takes to respond to do perfor-
mance analysis.

 Run npm install morgan --save and give this a try (saving it into app.js again).

var express = require("express");
var logger = require("morgan");
var http = require("http");

var app = express();

app.use(logger("short"));

app.use(function(request, response) {
 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("Hello, world!");
});

http.createServer(app).listen(3000);

Visit http://localhost:3000 and you’ll see some logging! Thanks, Morgan.

EXPRESS’S STATIC MIDDLEWARE

There’s more middleware out there than Morgan. It’s common for web applications
to need to send static files over the wire. These include things like images or CSS or
HTML—content that isn’t dynamic.

 express.static ships with Express and helps you serve static files. The simple act of
sending files turns out to be a lot of work, because there are a lot of edge cases and
performance considerations to think about. Express to the rescue!

 Let’s say you want to serve files out of a directory called public. The next listing
shows how you might do that with Express’s static middleware.

Listing 3.8 Using Morgan for logging (in app.js)

Fun fact:
logger("short")
returns a function
Licensed to <miler.888@gmail.com>

http://localhost:3000

39Middleware
var express = require("express");
var path = require("path");
var http = require("http");

var app = express();

var publicPath = path.resolve(__dirname, "public");
app.use(express.static(publicPath));

app.use(function(request, response) {
 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("Looks like you didn't find a static file.");
});

http.createServer(app).listen(3000);

Now, any file in the public directory will be shown. You can put anything in there that
you please and the server will send it. If no matching file exists in the public folder,
it’ll go on to the next middleware, and say “Looks like you didn’t find a static file.” If a
matching file is found, express.static will send it off and stop the middleware chain.

FINDING MORE MIDDLEWARE

I’ve shown Morgan and Express’s static middleware, but there are more. Here are a
few other helpful ones:

■ connect-ratelimit—Lets you throttle connections to a certain number of requests
per hour. If someone is sending numerous requests to your server, you can start
giving them errors to stop them from bringing your site down.

■ Helmet—Helps you add HTTP headers to make your app safer against certain
kinds of attacks. We’ll explore it in later chapters. (I’m a contributor to Helmet,
so I definitely recommend it!)

Listing 3.9 Using express.static (in app.js)

Why use path.resolve?
What’s all that business about path.resolve? Why can’t you just say /public? The
short answer is that you could, but it’s not cross-platform.

On Mac and Linux, you want this directory:

/public

But on Windows, you want this directory:

\public

Node’s built-in path module will make sure that things run smoothly on Windows,
Mac, and Linux.

Sets up the public
path, using Node’s
path module

Sends static files
from the publicPath
directory
Licensed to <miler.888@gmail.com>

40 CHAPTER 3 Foundations of Express
■ cookie-parser—Parses browser cookies.
■ response-time—Sends the X-Response-Time header so you can debug the perfor-

mance of your application.

We’ll explore many of these middleware options further in the next chapter.
 If you’re looking for more middleware, you’ll have luck searching for “Express

middleware,” but you should also search for “Connect middleware.” There’s another
framework called Connect that’s like Express but only does middleware. Connect mid-
dleware is compatible with Express, so if the “Express middleware” search isn’t fruit-
ful, try searching for “Connect middleware.”

3.2 Routing
Routing is a way to map requests to specific handlers depending on their URL and
HTTP verb. You could imagine having a homepage and an about page and a 404 page.
Routing can do all of this. I think this is better explained with code than with English,
so look at the following listing.

var express = require("express");
var path = require("path");
var http = require("http");

var app = express();

var publicPath = path.resolve(__dirname, "public");
app.use(express.static(publicPath));

app.get("/", function(request, response) {
 response.end("Welcome to my homepage!");
});

app.get("/about", function(request, response) {
 response.end("Welcome to the about page!");
});

app.get("/weather", function(request, response) {
 response.end("The current weather is NICE.");
});

app.use(function(request, response) {
 response.statusCode = 404;
 response.end("404!");
});

http.createServer(app).listen(3000);

After the basic requires, you add your static file middleware (as you’ve seen before).
This will serve any files in a folder called public.

 The three calls to app.get are Express’s magical routing system. They could also
be app.post, which respond to POST requests, or PUT, or any of the HTTP verbs.

Listing 3.10 Express routing example

Sets up static file
middleware like before.
Every request goes
through this middleware
and continues on if no
files are found.

Called when a request
to the root is made

Called when a request
to /about comes in

Called when a request
to /weather comes in

If you miss the others,
you’ll wind up here.
Licensed to <miler.888@gmail.com>

41Extending request and response
(We’ll talk more about these other HTTP verbs in later chapters.) The first argument
is a path, like /about or /weather or simply /, the site’s root. The second argument is
a request handler function similar to what you saw earlier in the middleware section.

 They’re the same request handler functions you’ve seen before. They work just
like middleware; it’s a matter of when they’re called.

 These routes can get smarter. In addition to matching fixed routes, they can match
more complex ones (imagine a regular expression or more complicated parsing), as
shown in the next listing.

app.get("/hello/:who", function(request, response) {
 response.end("Hello, " + request.params.who + ".");
 // Fun fact: this has some security issues, which we’ll get to!
});

It’s no coincidence that this who is the specified part in the first route. Express will pull
the value from the incoming URL and set it to the name you specify.

 Restart your server and visit localhost:3000/hello/earth for the following message:
Hello, earth. Note that this won’t work if you add something after the slash. For exam-
ple, localhost:3000/hello/entire/earth will give a 404 error.

 It’s likely that you’ve seen this sort of behavior all over the internet. You’ve likely
seen websites where you can visit a URL for a specific user. For example, if your user-
name were ExpressSuperHero, the URL for your user page might look something
like this:

https://mywebsite.com/users/ExpressSuperHero

Using Express, rather than defining a route for every single possible username (or article,
or photo, or whatever), you define one route that matches all of them.

 The docs also show an example that uses regular expressions to do even more
complex matching, and you can do lots of other stuff with this routing. For a concep-
tual understanding, I’ve said enough. We’ll explore this in far more detail in chapter 5.
But it gets more cool.

3.3 Extending request and response
Express augments the request and response objects that you’re passed in every
request handler. The old stuff is still there, but Express adds some new stuff too! The
API docs (http://expressjs.com/api.html) explain everything, but let’s look at a cou-
ple of examples.

 One nicety Express offers is the redirect method. The following listing shows how
it might work.

Listing 3.11 Grabbing data from routes

Specifies that the "hello"
part of the route is fixed

req.params has a
property called who.
Licensed to <miler.888@gmail.com>

http://expressjs.com/api.html

42 CHAPTER 3 Foundations of Express
response.redirect("/hello/world");
response.redirect("http://expressjs.com");

If you were just using Node, response would have no method called redirect;
Express adds it to the response object for you. You can do this in vanilla Node, but it’s
a lot more code.

 Express adds methods like sendFile, which lets you send a whole file, as the fol-
lowing listing shows.

response.sendFile("/path/to/cool_song.mp3");

Once again, the sendFile method isn’t available in vanilla Node; Express adds it for
you. And just like the redirect example shown previously, you can do this in vanilla
Node, but it’s a lot more code.

 It’s not only the response object that gets conveniences—the request object gets a
number of other cool properties and methods, like request.ip to get the IP address
or the request.get method to get incoming HTTP headers.

 Let’s use some of these things to build middleware that blocks an evil IP address.
Express makes this pretty easy, as shown here.

var express = require("express");
var app = express();

var EVIL_IP = "123.45.67.89";

app.use(function(request, response, next) {
 if (request.ip === EVIL_IP) {
 response.status(401).send("Not allowed!");
 } else {
 next();
 }
});

// ... the rest of your app ...

Notice that you’re using req.ip, a function called res.status(), and res.send().
None of these are built into vanilla Node—they’re all extensions added by Express.
Conceptually, there’s not much to know here, other than the fact that Express extends
the request and response.

 We’ve looked at a few niceties in this chapter, but I don’t want to give you the full
laundry list here. For every nice feature that Express gives you, you can check out its
API documentation at http://expressjs.com/4x/api.html.

Listing 3.12 Using redirect

Listing 3.13 sendFile example

Listing 3.14 Blacklisting an IP
Licensed to <miler.888@gmail.com>

http://expressjs.com/4x/api.html

43Views
3.4 Views
Websites are built with HTML. They’ve been built that way for a long, long time.
Although single-page apps are en vogue (and totally possible with Express), it’s often
the case that you want the server to dynamically generate HTML. You might want to
serve HTML that greets the currently logged-in user, or maybe you want to dynamically
generate a data table.

 A number of different view engines are available. There’s EJS (which stands for
Embedded JavaScript), Handlebars, Pug, and more. There are even ports of templat-
ing languages from other programming worlds, like Swig and HAML. All of these have
one thing in common: at the end of the day, they spit out HTML.

 For the rest of these examples, we’ll use EJS. I chose EJS because it’s a popular
option made by the people who created Express. I hope you’ll like it, but if you don’t,
there are plenty of alternatives, which we’ll discuss in chapter 7.

 The next listing shows what it looks like to set up views.

var express = require("express");
var path = require("path");

var app = express();

app.set("views", path.resolve(__dirname, "views"));
app.set("view engine", "ejs");

We’ll add more to this file in a moment. The first block is the same as always: require
what you need to. Then you say, “My views are in a folder called views.” After that, you
say, “Use EJS.” EJS (documentation at https://github.com/tj/ejs) is a templating lan-
guage that compiles to HTML. Make sure to install it with npm install ejs --save.

 Now, you’ve set up these views on the Express side. How do you use them? What is
this EJS business? Let’s start by making a file called index.ejs and put it into a directory
called views. It might look like the next listing.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Hello, world!</title>
 </head>
<body>
 <%= message %>
</body>
</html>

Listing 3.15 Setting up views with Express

Listing 3.16 A simple EJS file

Tells Express that your
views will be in a folder
called views

Tells Express that you’re
going to use the EJS
templating engine
Licensed to <miler.888@gmail.com>

https://github.com/tj/ejs

44 CHAPTER 3 Foundations of Express
This should look exactly like HTML to you, but for the one weird bit inside the body
tag. EJS is a superset of HTML, so everything that’s valid HTML is valid EJS. But EJS also
adds a few new features, like variable interpolation. <%= message %> will interpolate a
variable called message, which you’ll pass when you render the view from Express.
Here’s what that looks like.

app.get("/", function(request, response) {
 response.render("index", {
 message: "Hey everyone! This is my webpage."
 });
});

Express adds a method to response, called render. It basically looks at the view engine
and views directory (which you defined earlier) and renders index.ejs with the vari-
ables you pass in.

 The code in the next listing would render the HTML shown.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Hello, world!</title>
 </head>
<body>
 Hey everyone! This is my webpage.
</body>
</html>

EJS is a popular solution to views, but there are a number of other options, which we’ll
explore in later chapters. Now let’s work through an example.

3.5 Example: putting it all together in a guestbook
If you’re like me, you saw the internet in its early days; awkward animated GIFs, crufty
code, and Times New Roman on every page. In this chapter, we’ll resurrect one com-
ponent from that bygone era: the guestbook. A guestbook is pretty simple: users can
write new entries in the online guestbook, and they can browse others’ entries.

 Let’s use all that you’ve learned to build a more real application for this guestbook.
It turns out that all of these things will come in handy! Your site will have two pages:

■ A homepage that lists all of the previously posted guestbook entries
■ A page with an “add new entry” form

That’s it! Before you start, you have to get set up. Ready?

Listing 3.17 Rendering a view from Express

Listing 3.18 A simple EJS file, rendered

The variable you
specified in the
previous listing
Licensed to <miler.888@gmail.com>

45Example: putting it all together in a guestbook

Mak
Exp

Crea
g

arr
sto

en
3.5.1 Getting set up

Start a new project. Make a new folder, and inside, make a file called package.json. It
should look something like this next listing.

{
 "name": "express-guestbook",
 "private": true,
 "scripts": {
 "start": "node app"
 }
}

You can add other fields (like author or version), but for this example, you don’t
need much. Now, install your dependencies as you did before and save them into
package.json:

npm install express morgan body-parser ejs --save

These modules should look familiar to you, except for body-parser. Your app will need
to post new guestbook entries in HTTP POST requests, so you’ll need to parse the body
of the POST; that’s where body will come in.

 Check to make sure that Express, Morgan, body-parser, and EJS have been saved
into package.json. If they haven’t, make sure you’ve added the --save flag.

3.5.2 The main app code

Now that you’ve installed all of your dependencies, create app.js and put the following
app inside.

var http = require("http");
var path = require("path");
var express = require("express");
var logger = require("morgan");
var bodyParser = require("body-parser");

var app = express();

app.set("views", path.resolve(__dirname, "views"));
app.set("view engine", "ejs");

var entries = [];
app.locals.entries = entries;

app.use(logger("dev"));

app.use(bodyParser.urlencoded({ extended: false }));

Listing 3.19 package.json for the guestbook

Listing 3.20 The Express guestbook, in app.js

Starts
your app

Requires all of
the modules
you need

es an
ress
app

The first line tells Express
that the views are in the
views folder; the next line
says the views will use the
EJS engine.tes a

lobal
ay to
re all
your
tries

Makes this entries array
available in all views

Uses Morgan to log
every request

Populates a variable
called req.body if the
user is submitting a
form. (The extended
option is required.)
Licensed to <miler.888@gmail.com>

46 CHAPTER 3 Foundations of Express

De
a r
ha

when
PO

the “
entry”
in con

to a

If user s
t

with
or c

respon
a 40

Redi
t

home
to see
new e
app.get("/", function(request, response) {
 response.render("index");
});

app.get("/new-entry", function(request, response) {
 response.render("new-entry");
});

app.post("/new-entry", function(request, response) {
 if (!request.body.title || !request.body.body) {
 response.status(400).send("Entries must have a title and a body.");
 return;
 }
 entries.push({
 title: request.body.title,
 content: request.body.body,
 published: new Date()
 });
 response.redirect("/");
});

app.use(function(request, response) {
 response.status(404).render("404");
});

http.createServer(app).listen(3000, function() {
 console.log("Guestbook app started on port 3000.");
});

3.5.3 Creating the views

We’ve referenced a few views here, so let’s fill those in. Create a folder called views,
and then create the header in views/header.ejs, as shown in the next listing.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Express Guestbook</title>
<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/

bootstrap.min.css">
</head>
<body class="container">
 <h1>
 Express Guestbook

 Write in the guestbook

 </h1>

Listing 3.21 header.ejs

When visiting the site root,
renders the homepage (at
views/index.ejs)

Renders the “new entry”
page (at views/index.ejs)
when GETting the URL

fines
oute

ndler
 you

ST to
new-
 URL
trast
 GET

ubmits
he form
 no title
ontent,
ds with
0 error

Adds a new
entry to the
list of entries

rects
o the
page
 your
ntry

Renders a 404 page
because you’re requesting
an unknown source

Starts the server
on port 3000!

Loads Twitter’s
Bootstrap CSS from
the Bootstrap CDN
Licensed to <miler.888@gmail.com>

47Example: putting it all together in a guestbook
Notice that you use Twitter Bootstrap for styling, but you could easily replace it with
your own CSS. The most important part is that this is the header; this HTML will appear
at the top of every page.

NOTE In short, Bootstrap is a bunch of CSS and JavaScript that provides a lot
of default styling. You can absolutely write navbars and buttons and header
CSS yourself, but Bootstrap helps you get up and running quickly. You can
find out more at http://getbootstrap.com/.

Next, create the simple footer in views/footer.ejs, which will appear at the bottom of
every page, as follows.

</body>
</html>

Now that you’ve defined the common header and footer, you can define the three
views: the homepage, the “add a new entry” page, and the 404 page. Save the code in
the following listing into views/index.ejs.

<% include header %>
<% if (entries.length) { %>
 <% entries.forEach(function(entry) { %>
 <div class="panel panel-default">
 <div class="panel-heading">
 <div class="text-muted pull-right">
 <%= entry.published %>
 </div>
 <%= entry.title %>
 </div>
 <div class="panel-body">
 <%= entry.body %>
 </div>
 </div>
 <% }) %>
<% } else { %>
 No entries! Add one!
<% } %>
<% include footer %>

Save the next listing into views/new-entry.ejs.

<% include header %>

<h2>Write a new entry</h2>

<form method="post" role="form">
 <div class="form-group">
 <label for="title">Title</label>

Listing 3.22 footer.ejs

Listing 3.23 index.ejs

Listing 3.24 new-entry.ejs
Licensed to <miler.888@gmail.com>

http://getbootstrap.com/

48 CHAPTER 3 Foundations of Express
 <input type="text" class="form-control" id="title"
 ➥ name="title" placeholder="Entry title" required>
 </div>
 <div class="form-group">
 <label for="content">Entry text</label>
 <textarea class="form-control" id="body" name="body"
 ➥ placeholder="Love Express! It’s a great tool for
 ➥ building websites." rows="3" required></textarea>
 </div>
 <div class="form-group">
 <input type="submit" value="Post entry" class="btn btn-primary">
 </div>
</form>

<% include footer %>

Save the following into views/404.ejs.

<% include header %>
<h2>404! Page not found.</h2>
<% include footer %>

And that’s all your views!

3.5.4 Start it up

Now, npm start your app, and visit http://localhost:3000 to see your guestbook, as
shown in figure 3.4. Figure 3.5 shows the page to write a new entry in the guestbook.

Listing 3.25 404.ejs

Figure 3.4 The guestbook homepage
Licensed to <miler.888@gmail.com>

http://localhost:3000

49Summary
Look at that! What a beautiful little guestbook. It reminds me of the 1990s.
 Let’s review the parts of this little project:

■ You use a middleware function to log all requests, which helps you do debug-
ging. You also use a middleware at the end to serve the 404 page.

■ You use Express’s routing to direct users to the homepage, the “add a new
entry” view, and the POST for adding a new entry.

■ You use Express and EJS to render pages. EJS lets you dynamically create HTML;
you use this to dynamically display the content.

3.6 Summary
■ Express sits on top of Node’s HTTP functionality. It abstracts away a lot of its

rough edges.
■ Express has a middleware feature that allows you to pipeline a single request

through a series of decomposed functions.
■ Express’s routing feature lets you map certain HTTP requests to certain function-

ality. For example, when visiting the homepage, certain code should be run.
■ Express’s view-rendering features let you dynamically render HTML pages.
■ Many templating engines have been ported to work with Express. A popular

one is called EJS, which is the simplest for folks who know already HTML.

Figure 3.5 The page to write a new entry in the guestbook
Licensed to <miler.888@gmail.com>

Licensed to <miler.888@gmail.com>

Part 2

Core

In part 1, I set the scene, introducing Node.js, the server-side JavaScript run-
time. I also introduced the main character: Express.

 You saw that Express has four major features:

■ Middleware—In contrast to vanilla Node.js, where your requests flow
through only one function, Express has a middleware stack, which is effec-
tively an array of functions.

■ Routing—Routing is a lot like middleware, but the functions are called
only when you visit a specific URL with a specific HTTP method. You could
run a request handler only when the browser visits yourwebsite.com/
about, for example.

■ Extensions—Express extends the request and response objects with extra
methods and properties for developer convenience.

■ Views—Views allow you to dynamically render HTML. This allows you to
both change the HTML on the fly and write the HTML in other languages.

The next four chapters will delve into each of these features in depth:
 Chapter 4 will talk about middleware, perhaps the most important core fea-

ture of the framework. Almost every piece of the Express stack is influenced by
middleware in some respect, so this is a critical chapter.

 Chapter 5 discusses routing, the mechanism by which URLs are mapped to
JavaScript functions. The basics of routing are simple, but there’s a lot more in the
Express routing system that can come in handy. We’ll explore all of that in chap-
ter 5.
Licensed to <miler.888@gmail.com>

http://yourwebsite.com/about
http://yourwebsite.com/about

52 PART 2 Core
 The next chapter ties both of these together and shows how to build an API with
Express. You’ll build a web server that deals purely in JSON. No HTML, no other files—
just JSON. You’ll make heavy use of routing and middleware, so chapter 6 will apply
what you just learned.

 Chapter 7, the final part of the Core section, shows Express’s view feature. Dynami-
cally rendered HTML is a big part of many web applications, and you’ll see how to do it.

 This section serves to take your conceptual knowledge and deepen it. Let’s dig in!
Licensed to <miler.888@gmail.com>

Middleware
Without any framework like Express, Node gives you a pretty simple API. Create a
function that handles requests, pass it to http.createServer, and call it a day.
Although this API is simple, your request handler function can get unwieldy as your
app grows.

 Express helps to mitigate some of these issues. One of the ways it does this is
through the use of something called middleware. Framework-free Node has you
writing a single large request handler function for your entire app. Middleware
allows you to break these request handler functions into smaller bits. These smaller
functions tend to handle one thing at a time. One might log all of the requests that

This chapter covers
■ Writing middleware functions: a function with

three arguments
■ Writing and using error-handling middleware: a

function with four arguments
■ Using open source middleware functions, like

Morgan for logging and express.static for
serving static files
53

Licensed to <miler.888@gmail.com>

54 CHAPTER 4 Middleware
come into your server; another might parse special values of incoming requests; another
might authenticate users.

 Conceptually, middleware is the biggest part of Express. Most of the Express code
you write is middleware in one way or another. Hopefully, after this chapter, you’ll
see why!

4.1 Middleware and the middleware stack
At the end of the day, web servers listen for requests, parse those requests, and send
responses. The Node runtime will get these requests first and turn them from raw
bytes into two JavaScript objects that you can handle: one object for the request (req)
and one object for the response (res). When working with Node.js by itself, the flow
looks like figure 4.1.

These two objects will be sent to a JavaScript function that you’ll write. You’ll parse req
to see what the user wants and manipulate res to prepare your response.

 After a while, you’ll have finished writing to the response. When that has hap-
pened, you’ll call res.end. This signals to Node that the response is all done and
ready to be sent over the wire. The Node runtime will see what you’ve done to the
response object, turn it into another bundle of bytes, and send it over the internet to
whoever requested it.

 In Node, these two objects are passed through just one function. But in Express,
these objects are passed through an array of functions, called the middleware stack.
Express will start at the first function in the stack and continue in order down the
stack, as shown in figure 4.2.

 Every function in this stack takes three arguments. The first two are req and res
from before. They’re given to you by Node, although Express decorates them with a
few convenience features that we discussed in the previous chapter.

CLIENT

browser,

mobile app,

etc.

Client

requests

something

NODE’S

HTTP

SERVER

REQUEST

HANDLER

FUNCTION

Written

by you

HTTP server

hands request to

your function

Your function

hands response

to HTTP server

HTTP

server sends

response

Figure 4.1 When working with Node by itself, you have one function
that gives you a request object representing the incoming request and
a response object representing the response node should send back to
the client.
Licensed to <miler.888@gmail.com>

55Example app: a static file server
The third argument to each of these functions is itself a function, conventionally
called next. When next is called, Express will go on to the next function in the stack.
Figure 4.3 shows the signature of a middleware function.

Eventually, one of these functions in the stack must call res.end, which will end the
request. (In Express, you can also call some other methods like res.send or res.send-
File, but these call res.end internally.) You can call res.end in any of the functions
in the middleware stack, but you must only do it once or you’ll get an error.

 This might be a little abstract and foggy. Let’s see an example of how this works by
building a static file server.

4.2 Example app: a static file server
Let’s build a simple little application that serves files from a folder. You can put any-
thing in this folder and it’ll be served—HTML files, images, or an MP3 of yourself sing-
ing Celine Dion’s “My Heart Will Go On.”

 This folder will be called static and it will live in your project’s directory. If there’s a
file called celine.mp3 and a user visits /celine.mp3, your server should send that MP3
over the internet. If the user requests /burrito.html, no such file exists in the folder,
so your server should send a 404 error.

Express adds

features to

the request

and response

Your functions respond

to the request

HTTP server

sends response

CLIENT

browser,

mobile app,

etc.

Client

requests

something

NODE’S

HTTP

SERVER

EXPRESS

APP

HTTP server

hands request

to Express

MIDDLEWARE

STACK

Figure 4.2 When working in Express, the one request handler function is replaced with a stack of
middleware functions.

function(request, response, next)

An object that represents
the outgoing HTTP response

An object that represents
the incoming HTTP request

A function that will go to the
next middleware when called

Figure 4.3 All middleware
functions have the same
signature with three
functions: request,
response, and next.
Licensed to <miler.888@gmail.com>

56 CHAPTER 4 Middleware
 Another requirement is that your server should log every request, whether or not
it’s successful. It should log the URL that the user requested with the time that they
requested it.

 This Express application will be made up of three functions on the middleware
stack:

■ The logger—This will output the requested URL and the time it was requested to
the console. It’ll always continue on to the next middleware. (In terms of code,
it’ll always call next.)

■ The static file sender—This will check if the file exists in the folder. If it does, it’ll
send that file over the internet. If the requested file doesn’t exist, it’ll continue
on to the final middleware (once again, calling next).

■ The 404 handler—If this middleware is hit, it means that the previous one didn’t
find a file, and you should return a 404 message and finish up the request.

You could visualize this middleware stack like the one shown in figure 4.4.

Enough talking. Let’s build this thing.

4.2.1 Getting set up

Start by making a new directory. You can call it whatever you’d like; let’s choose static-
file-fun. Inside this directory, create a file called package.json, as shown in the follow-
ing listing. This file is present in every Node.js project and describes metadata about
your package, from its title to its third-party dependencies.

{
 "name": "static-file-fun",
 "private": true,
 "scripts": {
 "start": "node app.js"
 }
}

Listing 4.1 The package.json file for your static file application

logger

Always
called

Called if no
file is found

static file sender 404 handler

Always
called

Figure 4.4 The middleware stack of our static file server application

Defines the name
of your package

Tells Node not to
publish in the
public module
registryWhen you run

npm start, it’ll
run node app.js.
Licensed to <miler.888@gmail.com>

57Example app: a static file server
Once you’ve saved this package.json, you’ll want to install the latest version of Express.
From inside this directory, run npm install express --save. This will install Express
into a directory called node_modules inside of this folder. It’ll also add Express as a
dependency in package.json. package.json will now look like the following listing.

{
 "name": "static-file-fun",
 "private": true,
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "express": "^5.0.0"
 }
}

Next, create a folder called static inside of this new project directory (right next to
package.json). Put a few files inside—maybe an HTML file or an image or two. It
doesn’t really matter what you put in there, but put some files that your example app
will serve.

 As a last step, create app.js in the root of your project, which will contain all of your
app’s code. Your folder structure will look something like the one in figure 4.5.

 When you want to run this app, you’ll run npm start. This command will look
inside your package.json file, see that you’ve added a script called start, and run that
command. In this case, it’ll run node app.js.

 Running npm start won’t do anything yet—you haven’t written your app—but
you’ll run that whenever you want to run your application.

 Okay. Let’s write the app!

Listing 4.2 Updated package.json file for your static file application

Your dependency
versions may vary.

Figure 4.5 The directory
structure of static-file-fun
Licensed to <miler.888@gmail.com>

58 CHAPTER 4 Middleware
4.2.2 Writing your first middleware function: the logger

You’ll start by making your app log requests. Put the code in the following listing
inside app.js.

var express = require("express");
var path = require("path");
var fs = require("fs");

var app = express();

app.use(function(req, res, next) {
 console.log("Request IP: " + req.url);
 console.log("Request date: " + new Date());
});

app.listen(3000, function() {
 console.log("App started on port 3000");
});

Why use npm start?
Why use npm start at all—why don’t you run node app.js instead? There are three
reasons you might do this.

It’s a convention. Most Node web servers can be started with npm start, regardless
of the project’s structure. If instead of app.js someone had chosen application.js,
you’d have to know about that change. The Node community seems to have settled
on a common convention here.

It allows you to run a more complex command (or set of commands) with a relatively
simple one. Your app is pretty simple now, but starting it could be more complex in
the future. Perhaps you’ll need to start up a database server or clear a giant log file.
Keeping this complexity under the blanket of a simple command helps keep things
consistent and more pleasant.

The third reason is a little more nuanced. npm lets you install packages globally, so
you can run them just like any other terminal command. Bower is a common one, let-
ting you install front-end dependencies from the command line with the bower com-
mand. You install things like Bower globally on your system. npm scripts allow you to
add new commands to your project without installing them globally, so that you can
keep all of your dependencies inside your project, allowing you to have unique ver-
sions per project. This comes in handy for things like testing and build scripts, as
you’ll see down the line.

At the end of the day, you could run node app.js and never type npm start, but I
find the reasons just mentioned compelling enough to do it.

Listing 4.3 Start app.js for your static file server

Requires the modules
we will need

Creates an Express
application and puts it
inside the app variable

Logs all incoming
requests. (This
has a bug!)

Starts the app on port
3000 and logs out
when it’s started
Licensed to <miler.888@gmail.com>

59Example app: a static file server
For now, all you have is an application that logs every request that comes into the
server. Once you’ve set up your app (the first few lines), you call app.use to add a
function to your application’s middleware stack. When a request comes in to this
application, that function will be called.

 Unfortunately, even this simple app has a critical bug. Run npm start and visit
localhost:3000 in your browser to see it.

 You’ll see the request being logged into the console, and that’s great news. But
your browser will hang—the loading spinner will spin and spin and spin, until the
request eventually times out and you get an error in your browser. That’s not good!

 This is happening because you didn’t call next. When your middleware function is
finished, it needs to do one of two things:

■ It needs to finish responding to the request (with res.end or one of Express’s
convenience methods like res.send or res.sendFile).

■ It needs to call next to continue on to the next function in the middleware
stack.

If you do either of those, your app will work just fine. If you do neither, inbound
requests will never get a response; their loading spinners will never stop spinning (this
is what happened previously). If you do both, only the first response finisher will go
through and the rest will be ignored, which is almost certainly unintentional!

 These bugs are usually pretty easy to catch once you know how to spot them. If
you’re not responding to the request and you’re not calling next, it’ll look like your
server is super slow. You can fix your middleware by calling next, as shown in the next
listing.

// …

app.use(function(req, res, next) {
 console.log("Request IP: " + req.url);
 console.log("Request date: " + new Date());
 next();
});

// …

Now, if you stop your app, run npm start again, and visit http://localhost:3000 in
your browser, you should see your server logging all of the requests and immediately
failing with an error message (something like “Cannot GET /”). Because you’re never
responding to the request yourself, Express will give an error to the user, and it will
happen immediately.

 Now that you’ve written your logger, let’s write the next part—the static file server
middleware.

Listing 4.4 Fixing your logging middleware

This is the
critical new line.
Licensed to <miler.888@gmail.com>

http://localhost:3000

60 CHAPTER 4 Middleware
4.2.3 The static file server middleware

At a high level, this is what the static file server middleware should do:

1 Check if the requested file exists in the static directory.
2 If it exists, respond with the file and call it a day. In code terms, this is a call to

res.sendFile.
3 If the file doesn’t exist, continue to the next middleware in the stack. In code

terms, this is a call to next.

Let’s turn that requirement into code. You’ll start by building it yourself to under-
stand how it works, and then you’ll shorten it with some helpful third-party code.

 You’ll make use of Node’s built-in path module, which will let you determine the
path that the user requests. To determine whether the file exists, you’ll use another
Node built-in: the fs module.

 Add the code in the following listing to app.js after your logging middleware.

// …
app.use(function(req, res, next) {
 // …
});

app.use(function(req, res, next) {
 var filePath = path.join(__dirname, "static", req.url);
 fs.stat(filePath, function(err, fileInfo) {
 if (err) {
 next();
 return;
 }

 if (fileInfo.isFile()) {
 res.sendFile(filePath);
 } else {
 next();
 }
 });
});

Sick of restarting your server?
So far, when you change your code, you have to stop your server and start it again.
This can get repetitive! To alleviate this problem, you can install a tool called node-
mon, which will watch all of your files for changes and restart if it detects any.

You can install nodemon by running npm install nodemon --global.

Once it’s installed, you can start a file in watch mode by replacing node with nodemon
in your command. If you typed node app.js earlier, just change it to nodemon app.js,
and your app will continuously reload when it changes.

Listing 4.5 Adding static file middleware to the middleware stack

Uses path.join
to find the path
where the file
should be

Built-in
fs.stat gets
info about
a file

If fs.stat fails,
continue to the
next middleware.

If the file exists, call
res.sendFile ...

... otherwise,
continues to the
next middleware.
Licensed to <miler.888@gmail.com>

61Example app: a static file server
app.listen(3000, function() {
 // …

The first thing you do in this function is use path.join to determine the path of the
file. If the user visits /celine.mp3, req.url will be the string "/celine.mp3". There-
fore, filePath will be something like "/path/to/your/project/static/celine.mp3".
The path will look pretty different depending on where you’ve stored your project
and on your operating system, but it’ll be the path to the file that was requested.

 Next, you call fs.exists, which takes two arguments. The first is the path to check
(the filePath you just figured out) and the second is a function. When Node has fig-
ured out information about the file, it’ll call this callback with two arguments. The
callback’s first argument is an error, in case something goes wrong. The second argu-
ment is an object that has some methods about the file, such as isDirectory() or
isFile(). We use the isFile() method to determine whether the file exists.

 Express applications have asynchronous behavior like this all the time. That’s why
we must have next in the first place! If everything were synchronous, Express would
know exactly where every middleware ended: when the function finished (either by
calling return or hitting the end). You wouldn’t need to have next anywhere. But
because things are asynchronous, you need to manually tell Express when to continue
on to the next middleware in the stack.

 Once the callback has completed, you run through a simple conditional. If the file
exists, send the file. Otherwise, continue on to the next middleware.

 Now, when you run your app with npm start, try visiting resources you’ve put into
the static file directory. If you have a file called secret_plans.txt in the static file folder,
visit localhost:3000/secret_plans.txt to see it. You should also continue to see the log-
ging, just as before.

 If you visit a URL that doesn’t have a corresponding file, you should still see the
error message from before. This is because you’re calling next and there’s no more
middleware in the stack. Let’s add the final one—the 404 handler.

4.2.4 404 handler middleware

The 404 handler shown in the next listing is the last function in your middleware
stack. It’ll always send a 404 error, no matter what. Add this after the previous
middleware.

// …

app.use(function(req, res) {
 res.status(404);
 res.send("File not found!");
});

// …

Listing 4.6 Your final middleware: the 404 handler

We’ve omitted the
next argument because
you won’t use it.

Sets the status
code to 404

Sends the error
"File not found!”
Licensed to <miler.888@gmail.com>

62 CHAPTER 4 Middleware
This is the final piece of the puzzle. Now, when you start your server, you’ll see the
whole thing in action. If you visit a file that’s in the folder, it’ll show up. If not, you’ll
see your 404 error. And all the while, you’ll see logs in the console.

 For a moment, try moving the 404 handler. Make it the first middleware in the
stack instead of the last. If you rerun your app, you’ll see that you always get a 404
error no matter what. Your app hits the first middleware and never continues on. The
order of your middleware stack is important—make sure your requests flow through
in the proper order.

 Here’s what the app should look like.

var express = require("express");
var path = require("path");
var fs = require("fs");

var app = express();

app.use(function(req, res, next) {
 console.log("Request IP: " + req.url);
 console.log("Request date: " + new Date());
 next();
});

app.use(function(req, res, next) {
 var filePath = path.join(__dirname, "static", req.url);
 fs.stat(filePath, function(err, fileInfo) {
 if (err) {
 next();
 return;
 }

 if (fileInfo.isFile()) {
 res.sendFile(filePath);
 } else {
 next();
 }
 });
});

app.use(function(req, res) {
 res.status(404);
 res.send("File not found!");
});

app.listen(3000, function() {
 console.log("App started on port 3000");
});

But as always, there’s more you can do.

Listing 4.7 The first version of the static file app (app.js)
Licensed to <miler.888@gmail.com>

63Example app: a static file server
4.2.5 Switching your logger to an open source one: Morgan

A common piece of advice in software development is “don’t reinvent the wheel.” If
someone else has already solved your problem, it’s often a good idea to take their solu-
tion and move on to better things.

 That’s what you’ll do with your logging middleware. You’ll remove the hard work
you put in (all five lines) and use a piece of middleware called Morgan (https://
github.com/expressjs/morgan). It’s not baked into core Express, but it is maintained
by the Express team.

 Morgan describes itself as “request logger middleware,” which is exactly what you
want. Run npm install morgan --save to install the latest version of the Morgan pack-
age. You’ll see it inside a new folder inside of node_modules, and it’ll also appear in
package.json.

 Now, let’s change app.js to use Morgan instead of your logging middleware, as
shown in the next listing.

var express = require("express");
var morgan = require("morgan");
// …

var app = express();

app.use(morgan("short"));

// …

Now, when you run this app, you’ll see output like that shown in figure 4.6, with the IP
address and a bunch of other useful information.

So, what’s happening here? morgan is a function that returns a middleware function.
When you call it, it will return a function like the one you wrote previously; it’ll take
three arguments and call console.log. Most third-party middleware works this way—
you call a function that returns the middleware, which you then use. You could have
written the previous one like the following.

Listing 4.8 app.js that now uses Morgan

Requires Express,
as before

Requires
Morgan

Uses the Morgan
middleware instead of the
one you used to have

Figure 4.6 Our application’s
logs after adding Morgan
Licensed to <miler.888@gmail.com>

https://github.com/expressjs/morgan
https://github.com/expressjs/morgan

64 CHAPTER 4 Middleware
var morganMiddleware = morgan("short");
app.use(morganMiddleware);

Notice that you’re calling Morgan with one argument: a string, "short". This is a
Morgan-specific configuration option that dictates what the output should look like.
There are other format strings that have more or less information: "combined" gives a
lot of info; "tiny" gives a minimal output. When you call Morgan with different config-
uration options, you’re effectively making it return a different middleware function.

 Morgan is the first example of open source middleware you’ll use, but you’ll use a
lot throughout this book. You’ll use another one to replace your second middleware
function: the static file server.

4.2.6 Switching to Express’s built-in static file middleware

There’s only one piece of middleware that’s bundled with Express, and it replaces
your second middleware.

 It’s called express.static. It works a lot like the middleware we wrote, but it has a
bunch of other features. It does several complicated tricks to achieve better security
and performance, such as adding a caching mechanism. If you’re interested in more
of its benefits, you can read my blog post at http://evanhahn.com/express-dot-static-
deep-dive/.

 Like Morgan, express.static is a function that returns a middleware function. It
takes one argument: the path to the folder you’ll be using for static files. To get this
path, you’ll use path.join, like before. Then you’ll pass it to the static middleware.

 Replace your static file middleware with the code in the following listing.

// …

var staticPath = path.join(__dirname, "static");
app.use(express.static(staticPath));

// …

It’s a bit more complicated because it has more features, but express.static func-
tions quite similarly to what you had before. If the file exists at the path, it will send it.
If not, it will call next and continue on to the next middleware in the stack.

 If you restart your app, you won’t notice much difference in functionality, but your
code will be much shorter. Because you’re using battle-tested middleware instead of
your own, you’ll also be getting a much more reliable set of features.

 Now your app code looks like this.

Listing 4.9 An alternative use of Morgan

Listing 4.10 Replacing your static file middleware with Express’s

Puts the static
path in a variable

Uses express.static to serve
files from the static path
Licensed to <miler.888@gmail.com>

http://evanhahn.com/express-dot-static-deep-dive/
http://evanhahn.com/express-dot-static-deep-dive/

65Error-handling middleware
var express = require("express");
var morgan = require("morgan");
var path = require("path");

var app = express();

app.use(morgan("short"));

var staticPath = path.join(__dirname, "static");
app.use(express.static(staticPath));

app.use(function(req, res) {
 res.status(404);
 res.send("File not found!");
});

app.listen(3000, function() {
 console.log("App started on port 3000");
});

I think you can call your Express-powered static file server complete for now. Well
done, hero.

4.3 Error-handling middleware
Remember when I said that calling next would continue on to the next middleware? I
lied. It was mostly true but I didn’t want to confuse you.

 There are two types of middleware. You’ve been dealing with the first type so far—
regular middleware functions that take three arguments (sometimes two when next is
discarded). Most of the time, your app is in normal mode, which looks only at these
middleware functions and skips the other.

 There’s a second kind that’s much less-used: error-handling middleware. When
your app is in error mode, all regular middleware is ignored and Express will execute
only error-handling middleware functions. To enter error mode, simply call next with
an argument. It’s convention to call it with an error object, as in next(new Error
("Something bad happened!")).

 These middleware functions take four arguments instead of two or three. The first
one is the error (the argument passed into next), and the remainder are the three
from before: req, res, and next. You can do anything you want in this middleware.
When you’re done, it’s just like other middleware: you can call res.end or next. Call-
ing next with no arguments will exit error mode and move onto the next normal mid-
dleware; calling it with an argument will continue onto the next error-handling
middleware if one exists.

 Let’s say you have four middleware functions in a row. The first two are normal,
the third handles errors, and the fourth is normal. If no errors happen, the flow will
look something like figure 4.7.

Listing 4.11 The next version of your static file app (app.js)
Licensed to <miler.888@gmail.com>

66 CHAPTER 4 Middleware
If no errors happen, it’ll be as if the error-handling middleware never existed. To reit-
erate more precisely, “no errors” means “next was never called with any arguments.” If
an error does happen, then Express will skip over all other middleware until the first
error-handling middleware in the stack. It might look like figure 4.8.

While not enforced, error-handling middleware is conventionally placed at the end of
your middleware stack, after all the normal middleware has been added. This is because
you want to catch any errors that come cascading down from earlier in the stack.

Let’s say that you’re writing a really simple Express app that sends a picture to the
user, no matter what. We’ll use res.sendFile just like before. The following listing
shows what that simple app might look like.

var express = require("express");
var path = require("path");

var app = express();

No catching here
Express’s error-handling middleware does not handle errors that are thrown with the
throw keyword, only when you call next with an argument.

Express has some protections in place for these exceptions. The app will return a
500 error and that request will fail, but the app will keep on running. Some errors like
syntax errors, however, will crash your server.

Listing 4.12 A simple app that always sends a file

Normal

middleware

Normal

middleware

Error-handling

middleware

Normal

middleware

Figure 4.7 If all goes well, error-handling middleware will be skipped.

Normal

middleware

Normal

middleware

Error-handling

middleware

Normal

middleware

Figure 4.8 If there’s an error, Express will skip straight to the error-handling
middleware.
Licensed to <miler.888@gmail.com>

67Error-handling middleware
var filePath = path.join(__dirname, "celine.jpg");
app.use(function(req, res) {
 res.sendFile(filePath);
});

app.listen(3000, function() {
 console.log("App started on port 3000");
});

This code should look like a simplified version of the static file server you built previ-
ously. It’ll unconditionally send celine.jpg over the internet.

 But what if that file doesn’t exist on your computer? What if it has trouble reading
the file? You’ll want to have some way of handling that error. Error-handling middle-
ware to the rescue!

 To enter error mode, you’ll start by using a convenient feature of res.sendFile: it
can take an extra argument, which is a callback. This callback is executed after the file
is sent, and if there’s an error in sending, it’s passed an argument. If you wanted to
print its success, you might do something like the following listing.

res.sendFile(filePath, function(err) {
 if (err) {
 console.error("File failed to send.");
 } else {
 console.log("File sent!");
 }
});

Instead of printing the success story to the console, you can enter error mode by calling
next with an argument if there’s an error. You can do something like this next listing.

// …

app.use(function(req, res, next) {
 res.sendFile(filePath, function(err) {
 if (err) {
 next(new Error("Error sending file!"));
 }
 });
});

// …

Now that you’re in this error mode, you can handle it.
 It’s common to have a log of all errors that happen in your app, but you don’t usu-

ally display this to users. A long JavaScript stack trace might be pretty confusing to a
nontechnical user. It might also expose your code to hackers—if a hacker can get a
glimpse into how your site works, they can find things to exploit.

Listing 4.13 Printing whether a file successfully sent

Listing 4.14 Entering error mode if a file fails to send

Points to a file called
celine.jpg, in the same
folder as this JavaScript file
Licensed to <miler.888@gmail.com>

68 CHAPTER 4 Middleware
 Let’s write simple middleware that logs errors but doesn’t respond to the error. It’ll
look a lot like your middleware from before, but instead of logging request informa-
tion, it’ll log the error. You could add the following to your file after all the normal
middleware.

// …

app.use(function(err, req, res, next) {
 console.error(err);
 next(err);
});

// …

Now, when an error comes through, you’ll log it to the console so that you can investigate
it later. But there’s more that needs to be done to handle this error. This is similar to
before—the logger did something, but it didn’t respond to the request. Let’s write that part.

 You can add this code after the previous middleware. This will simply respond to
the error with a 500 status code.

// …

app.use(function(err, req, res, next) {
 res.status(500);
 res.send("Internal server error.");
});

// …

Keep in mind that, no matter where this middleware is placed in your stack, it won’t be
called unless you’re in error mode—in code, this means calling next with an argument.

 You may notice that this error-handling middleware has four arguments but we
don’t use all of them. Express uses the number of arguments of a function to deter-
mine which middleware handles errors and which doesn’t.

 For simple applications, there aren’t loads and loads of places where things can go
wrong. But as your apps grow, you’ll want to remember to test errant behavior. If a
request fails and it shouldn’t, make sure you handle that gracefully instead of crash-
ing. If an action should perform successfully but fails, make sure your server doesn’t
explode. Error-handling middleware can help this along.

4.4 Other useful middleware
Two different Express applications can have pretty different middleware stacks. Our
example app’s stack is just one of many possible middleware configurations, and there
are lots out there that you can use.

Listing 4.15 Middleware that logs all errors

Listing 4.16 Responding to the error

Same as the other
middleware but with
an extra argument

Logs the
error

Continues to the
next error-handling
middleware

Make sure you specify
four arguments.

Sets the status
code to 500Sends the

error text
Licensed to <miler.888@gmail.com>

69Summary
 There’s only one piece of middleware that’s bundled with Express, and that’s
express.static. You’ll be installing and using lots of other middleware throughout
this book.

 Although these modules aren’t bundled with Express, the Express team maintains
a number of middleware modules:

■ body-parser for parsing request bodies. For example, when a user submits a form. See
more at https://github.com/expressjs/body-parser.

■ cookie-parser for parsing cookies from users. It needs to be paired with another Express-
supported middleware like express-session. Once you’ve done this, you can keep
track of users, providing them with user accounts and other features. We’ll explore
this in greater detail in chapter 7. https://github.com/expressjs/cookie-session
has more details.

■ Compression for compressing responses to save on bytes. See more at https://github.com/
expressjs/compression.

You can find the full list on the Express homepage at http://expressjs.com/resources/
middleware.html. There’s also a huge number of third-party middleware modules that
we’ll explore. To name two:

■ Helmet—Helps to secure your applications. It doesn’t magically make you more
secure, but a small amount of work can protect you from a lot of hacks. Read
more at https://github.com/helmetjs/helmet. (I maintain this module, by the
way, so I have to promote it!)

■ connect-assets—Compiles and minifies your CSS and JavaScript assets. It will also
work with CSS preprocessors like SASS, SCSS, LESS, and Stylus, should you choose
to use them. See https://github.com/adunkman/connect-assets.

This is hardly an exhaustive list. I also recommend a number of helpful modules in
appendix A if you’re thirsty for even more helpers.

4.5 Summary
■ Express applications have a middleware stack. When a request enters your

application, requests go through this middleware stack from the top to the bot-
tom, unless they’re interrupted by a response or an error.

■ Middleware is written with request handler functions. These functions take two
arguments at a minimum: first, an object representing the incoming request;
second, an object representing the outgoing response. They often take a func-
tion that tells them how to continue on to the next middleware in the stack.

■ There are numerous third-party middleware written for your use. Many of these
are maintained by Express developers.
Licensed to <miler.888@gmail.com>

https://github.com/expressjs/body-parser
https://github.com/expressjs/cookie-session
https://github.com/expressjs/compression
https://github.com/expressjs/compression
http://expressjs.com/resources/middleware.html
http://expressjs.com/resources/middleware.html
https://github.com/helmetjs/helmet
https://github.com/adunkman/connect-assets

Routing
As you’ve seen, routing is one of Express’s big features, allowing you to map differ-
ent requests to different request handlers. In this chapter, we’ll go far more in
depth. We’ll look at routing in detail, show how to use Express with HTTPS, explore
Express 4’s new routers features, and more. We’ll also build a couple of routing-
centric applications, one of which will be a running example throughout the remain-
der of the book.

 In this chapter, I’ll tell you everything there is to know about routing in Express.

5.1 What is routing?
Let’s imagine you’re building the homepage for Olivia Example. She’s a great lady
and you’re honored to build her website.

This chapter covers
■ Simple and pattern-matching routing
■ Using middleware with routing
■ Serving static files with express.static,

Express’s built-in static file middleware
■ Using Express with Node’s built-in HTTPS

module
70

Licensed to <miler.888@gmail.com>

71The features of routing
 If you’re using a browser to visit example.com/olivia, here’s what the first part of
the raw HTTP request might look like:

GET /olivia http/1.1

That HTTP request has a verb (GET), a URI (/olivia), and the HTTP version (1.1).
When you’re routing, you take the pair consisting of the verb and the URI and map it
to a request handler. You basically say, “Hey, Express! When you see a GET request to
/about_me, run this code. And when you see a POST request to /new_user, run this
other code.”

 That’s pretty much it—routing maps verbs and URIs to specific code. Let’s look at a
simple example.

5.1.1 A simple routing example

Let’s say you want to write a simple Express application that responds to the previous
HTTP request (an HTTP GET to /olivia). You’ll call methods on your Express app, as
shown in the following listing.

var express = require("express");
var app = express();

app.get("/olivia", function(request, response) {
 response.send("Welcome to Olivia’s homepage!");
});

app.use(function(request, response) {
 response.status(404).send("Page not found!");
});

app.listen(3000);

The real meat of this example is on the third line: when you get HTTP GET requests to
/olivia, you run the specified request handler. To hammer this home: you’ll ignore
this if you see a GET request to some other URI, and you’ll also ignore this if you see a
non-GET request to /olivia.

 This is a pretty simple example (hence the title of this section). Let’s take a look at
more complex routing features.

5.2 The features of routing
So we’ve just looked at a simple example of routing. Conceptually, it’s not too crazy: it
maps an HTTP verb + URI combo to a request handler. This lets you map things like
GET /about or POST /user/log_in to a specific bit of code. This is great!

 But we’re greedy. If Express were a vat of ice cream, we wouldn’t be satisfied with
one scoop. We want more scoops. We want sprinkles. We want chocolate sauce. We
want more routing features.

Listing 5.1 A simple Express app that shows Olivia’s homepage

Routes GET requests
to /olivia to the
request handler

If you load something
other than /olivia,
serves a 404 error.

Starts the server
on port 3000
Licensed to <miler.888@gmail.com>

http://example.com/olivia

72 CHAPTER 5 Routing
NOTE Some other frameworks (Ruby on Rails, for example) have a central-
ized routing file where all routes are defined in one place. Express is not this
way—routes can be defined in numerous places.

5.2.1 Grabbing parameters to routes

The routes you’ve just seen could be expressed in code with a strict equality operator
(===); is the user visiting /olivia? That’s very useful, but it doesn’t give you all the
expressive power you might want.

 Imagine you’ve been tasked to make a website that has user profiles, and imagine
that every user has a numeric ID. You want the URL for user #1 to be /users/1. User #2
should be found at /users/2, and so on. Rather than define, in code, a new route for
every single new user (which would be crazy), you can define one route for everything
that starts with /users/ and then has an ID.

THE SIMPLEST WAY

The simplest way to grab a parameter is by putting it in your route with a colon in
front of it. To grab the value, you’ll look inside the params property of the request, as
shown in the next listing.

app.get("/users/:userid", function(req, res) {
 var userId = parseInt(req.params.userid, 10);
 // …
});

In this example, you see how to grab parameters from a more dynamic route. The
code will match what you want: things like /users/123 and /users/8. But although it
won’t match a parameter-less /users/ or /users/123/posts, it probably still matches
more than what you want. It will also match /users/cake and /users/horse_ebooks. If
you want to be more specific, you have a few options.

NOTE Although you’ll often want to be more specific with your parameter
definitions, it might very well be that this is fine for your purposes. You might
want to allow /users/123 and /users/count_dracula. Even if you want to
allow only numeric parameters, you might prefer to have validation logic
right in the route. As you’ll see, there are other ways to do it, but that might
be just fine for you.

5.2.2 Using regular expressions to match routes

Express allows you to specify your routes as strings and to specify them as regular
expressions. This gives you more control over the routes you specify. You can also use
regular expressions to match parameters, as you’ll see.

Listing 5.2 The simplest parameter

Matches requests
coming into /users/
123 and /users/
horse_ebooksConverts the userid

property to an integer
Licensed to <miler.888@gmail.com>

73The features of routing
NOTE Regular expressions can get a little hairy. They scared me when I first
started working with them, but I found that fear greatly reduced by the entry
on the Mozilla Developer Network. If you need help, I strongly recommend
checking it out at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Guide/Regular_Expressions.

Let’s imagine that you want to match things like /users/123 or /users/456 but not
/users/olivia. You can code this into a regular expression and grab the number to
boot, as shown in the next listing.

app.get(/^\/users\/(\d+)$/, function(req, res) {
 var userId = parseInt(req.params[0], 10);
 // ...
});

This is one way to enforce the “the user ID must be an integer” constraint. Like the
previous example, it’s passed in as a string, so you have to convert it to a number (and
probably to a user object farther down the line).

 Regular expressions can be a little difficult to read, but you can use them to define
much more complex routes than these. You might want, for example, to define a
route that looks for ranges; that is, if you visit /users/100-500, you can see a list of
users from IDs 100 to 500. Regular expressions make this relatively easy to express (no
pun intended), as shown here.

app.get(/^\/users\/(\d+)-(\d+)$/, function(req, res) {
 var startId = parseInt(req.params[0], 10);
 var endId = parseInt(req.params[1], 10);
 // …
});

You can daydream about the number of possibilities this opens up. For example, I
once had to define a route that matched UUIDs (versions 3 and 4). If you’re not famil-
iar, a UUID is a long string of hex digits that looks like this:

xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx

where x is any hex digit and y is 8, 9, A, or B. Let’s say you want to write a route that
matches any UUID. It might look something like the next listing.

Listing 5.3 Using regular expressions for numeric routes

Listing 5.4 Using regular expressions for complex routes

Defines the route
URLs and captures
digits using a regular
expressionAccesses parameters

by their ordinality

Defines the route with
a regular expression

Grabs the first captured
parameter as a string and
does some conversion

Grabs the second parameter
and converts it to an integer
Licensed to <miler.888@gmail.com>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

74 CHAPTER 5 Routing
var horribleRegexp = /^([0-9a-f]{8}-[0-9a-f]{4}-

➥ 4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12})$/i;

app.get(horribleRegexp, function(req, res) {
 var uuid = req.params[0];
 // ...
});

I could fill hundreds of pages with more examples, but I won’t. The key takeaway
here: you can use regular expressions to define your routes.

5.2.3 Grabbing query arguments

Another common way to dynamically pass information in URLs is to use query strings.
You’ve probably seen query strings every time you’ve done a search on the internet.
For example, if you searched for “javascript-themed burrito” on Google, you’d see a
URL like this: https://www.google.com/search?q=javascript-themed%20burrito.

 This is passing a query. If Google were written in Express (it’s not), it might handle
a query as shown in the following listing.

app.get("/search", function(req, res) {
 // req.query.q == "javascript-themed burrito"
 // ...
});

This is pretty similar to how you handle parameters, but it allows you to grab this style
of query.

NOTE There’s a common security bug with query parameters, unfortunately.
If you visit ?arg=something, then req.query.arg will be a string. But if you go to
?arg=something&arg=somethingelse, then req.query.arg will be an array. We’ll
discuss coping with these types of issues in detail in chapter 8. In general, you’ll
want to make sure that you don’t blindly assume something is a string or an array.

5.3 Using routers to split up your app
It’s likely that as your application grows, so will your number of routes. Your collabora-
tive cat-photo montage site might start with routes for static files and for images, but
you might later add user accounts, chat, forums, and the like. Your number of routes
can get unwieldy.

 Express 4 added routers, a feature to help ease these growing pains. To quote the
Express documentation:

A router is an isolated instance of middleware and routes. Routers can be
thought of as “mini” applications only capable of performing middleware
and routing. Every express application has a built-in app router.

Listing 5.5 UUID-matching routes with a regexp

Listing 5.6 Handling a search query string
Licensed to <miler.888@gmail.com>

https://www.google.com/search?q=javascript-themed%20burrito

75Using routers to split up your app
Routers behave like middleware and can be “.use()d” by the app in other routers. In
other words, routers allow you to chunk your big app into numerous mini-apps that
you can later put together. For small apps, this might be overkill, but as soon as you
think, “This app.js file is getting big,” it’s time to think about breaking down your app
with routers. Listing 5.7 shows how to use routers from the main app file.

NOTE Routers really shine when you’re building a bigger application. I don’t
want to build a huge application in this section, so this example will have
some spots that you should fill in with your imagination.

var express = require("express");
var path = require("path");
var apiRouter = require("./routes/api_router");

var app = express();

var staticPath = path.resolve(__dirname, "static");
app.use(express.static(staticPath));

app.use("/api", apiRouter);

app.listen(3000);

As you can see, you use your API router just like middleware because routers are basi-
cally middleware. In this case, any URL that starts with /api will be sent straight to your
router. That means that /api/users and /api/message will use your router code, but
something like /about/celinedion will not.

 Now, define your router, as follows. Think of it as a subapplication.

var express = require("express");

var ALLOWED_IPS = [
 "127.0.0.1",
 "123.456.7.89"
];

var api = express.Router();

api.use(function(req, res, next) {
 var userIsAllowed = ALLOWED_IPS.indexOf(req.ip) !== -1;
 if (!userIsAllowed) {
 res.status(401).send("Not authorized!");
 } else {
 next();
 }
});

api.get("/users", function(req, res) { /* ... */ });
api.post("/user", function(req, res) { /* ... */ });

Listing 5.7 Routers in action: the main app

Listing 5.8 A sample router definition (at routes/api_router.js)

Requires and uses
your API router
(defined in the
next listing)
Licensed to <miler.888@gmail.com>

76 CHAPTER 5 Routing
api.get("/messages", function(req, res) { /* ... */ });
api.post("/message", function(req, res) { /* ... */ });

module.exports = api;

This looks a lot like a mini-application; it supports middleware and routes. The main
difference is that it can’t stand alone; it has to be plugged into a grown-up app. Rout-
ers can do the same routing that big apps can do and they can use middleware.

 You could imagine making a router with many subrouters. Maybe you want to
make an API router that further defers to a users router and a messages router or per-
haps something else

5.4 Serving static files
Unless you are building a web server that’s 100% API (and I do mean 100%), you’re
probably going to send a static file or two. Maybe you have some CSS to send, maybe
you have a single-page app that needs static files sent, or maybe you’re a donut enthu-
siast and have gigabytes of donut photos to serve your hungry viewers.

 You’ve seen how to send static files before, but let’s explore it in more depth.

5.4.1 Static files with middleware

We’ve sent static files with middleware before, but don’t roll your eyes yet—we’re
going to dive just a little deeper. We went over this in chapter 2, so I won’t preach the
benefits of this stuff. The following listing is a review of the code example we used in
chapter 2.

var express = require("express");
var path = require("path");
var http = require("http");
var app = express();

var publicPath = path.resolve(__dirname, "public");
app.use(express.static(publicPath));

app.use(function(request, response) {
 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("Looks like you didn’t find a static file.");
});

http.createServer(app).listen(3000);

Recall that path.resolve helps keep your path resolution cross-platform (things are
different on Windows and Mac and Linux). Also recall that this is much better than
doing it all yourself. If any of this is unclear, refer to chapter 2.

 Now let’s go deeper.

Listing 5.9 A simple example of express.static

Sets up the path
where your static
files will sit, using
Node’s path module

Sends static
files from the
publicPath
directory
Licensed to <miler.888@gmail.com>

77Serving static files
CHANGING THE PATHS FOR CLIENTS

It’s common that you’ll want to serve files at the root of your site. For example, if your
URL is http://jokes.edu and you’re serving jokes.txt, the path will be http://jokes.edu/
jokes.txt.

 But you might also want to mount static files at a different URL for clients. For
example, you might want a folder full of offensive-but-hilarious photos to look like it’s in
a folder called offensive, so a user might visit http://jokes.edu/offensive/photo123.jpg.
How might you do this?

 Express to the rescue! Middleware can be mounted at a given prefix. In other
words, you can make a middleware respond only if it starts with /offensive. The next
listing shows how that’s done.

// …
var photoPath = path.resolve(__dirname, "offensive-photos-folder");
app.use("/offensive", express.static(photoPath));
// …

Now web browsers and other clients can visit your offensive photos at a path other
than the root. Note that this can be done for any middleware, not only the static file
middleware. Perhaps the biggest example is the one you just saw: mounting Express’s
routers at a prefix.

ROUTING WITH MULTIPLE STATIC FILE DIRECTORIES

I frequently find myself with static files in multiple directories. For example, I sometimes
have static files in a folder called public and another in a folder called user_uploads.
How can you do this with Express?

 Express solves this problem with the built-in middleware feature, and because
express.static is middleware, you can just apply it multiple times. Here’s how you might
do that.

// …

var publicPath = path.resolve(__dirname, "public");
var userUploadsPath = path.resolve(__dirname, "user_uploads");

app.use(express.static(publicPath));
app.use(express.static(userUploadsPath));

// …

Now, let’s imagine four scenarios and see how this code deals with them:

■ The user requests a resource that isn’t in the public folder or the user_uploads folder. Both
static middleware functions will continue on to the next routes and middleware.

■ The user requests a resource that’s in the public folder. The first middleware will send
the file and no following routes or middleware functions will be called.

Listing 5.10 Mounting static file middleware

Listing 5.11 Serving static files from multiple directories

Depends on the
path module;
requires it before
you use it
Licensed to <miler.888@gmail.com>

http://jokes.edu
http://jokes.edu/jokes.txt
http://jokes.edu/jokes.txt
http://jokes.edu/offensive/photo123.jpg

78 CHAPTER 5 Routing
■ The user requests a resource that’s in the user_uploads folder but not the public folder.
The first middleware will continue on (it’s not in public), so the second middle-
ware will pick it up. After that, no other middleware or route will be called.

■ The user requests a resource that’s in both the public folder and the user_uploads folder.
Because the public-serving middleware is first, users will get the file in public
and users will never be able to reach the matching file in the user_uploads folder.

As always, you can mount middleware at different paths to avoid the issue presented in
the fourth option. The next listing shows how you might do that.

// …

app.use("/public", express.static(publicPath));
app.use("/uploads", express.static(userUploadsPath));

// …

Now, if image.jpg is in both folders, you’ll be able to grab it from the public folder at
/public/image.jpg and from the user_uploads folder in /uploads/image.jpg.

5.4.2 Routing to static files

It’s possible that you’ll want to send static files with a route. You might want to send a
user’s profile picture if they visit /users/123/profile_photo. The static middleware
has no way of knowing about this, but Express has a nice way of doing this, which uses
a lot of the same internal mechanisms as the static middleware.

 Let’s say you want to send profile pictures when someone visits /users/:userid/
profile_photo. Let’s also say that you have a magic function called getProfilePhoto-
Path that takes a user ID and returns the path to their profile picture. The following
listing shows how to do that.

app.get("/users/:userid/profile_photo", function(req, res) {
 res.sendFile(getProfilePhotoPath(req.params.userid));
});

In chapter 2, you saw that this would be a big headache without Express. You’d have to
open the file, figure out its content type (HTML, plain text, image, ...), its file size, and
so on. Express’s sendFile does all of this for you and lets you send files easily. You can
use this to send any file you want.

5.5 Using Express with HTTPS
As discussed earlier in the chapter, HTTPS adds a secure layer to HTTP (although
nothing is invincible). This secure layer is called TLS (Transport Layer Security) or

Listing 5.12 Serving static files from multiple directories without conflict

Listing 5.13 Sending profile pictures
Licensed to <miler.888@gmail.com>

79Using Express with HTTPS
SSL (Secure Sockets Layer). The names are used interchangeably, but TLS is techni-
cally the successor to SSL.

 I won’t go into the crazy math involved, but TLS uses what’s called public-key cryp-
tography which works like this: every peer has a public key that they share with every-
body and a private key that they share with nobody. If I want to send something to you,
I encrypt the message with my private key (probably somewhere on my computer)
and your public key (publicly available to anyone). I can then send you messages that
look like garbage to any eavesdroppers, and you decrypt them with your private key
and my public key. Through crazy cool math, we can have a secure conversation even
if everyone is listening to us, and we never had to agree on some kind of secret code
beforehand.

 If this is a bit confusing, just remember that both peers have a private key and a
public key. In TLS, the public key also has a special property called a certificate. If I’m
talking to you, you’ll present me with your certificate (a.k.a. your public key), and I’ll
make sure it’s actually you by making sure a certificate authority says “Yeah, that’s
you.” Your browser has a list of certificate authorities that it trusts; companies like Veri-
Sign and Google run these certificate authorities, known as CAs.

 I imagine certificate authorities as a bodyguard. When I’m talking to somebody, I
look up at my bodyguard and say “Hey, is this person who they say they are?” My body-
guard looks down at me and gives a small nod or maybe a shake of the head.

NOTE Some hosting providers like Heroku will do all the HTTPS for you so
that you don’t have to worry about it. This section is useful only if you have to
do HTTPS yourself!

First, you’ll need to generate your public and private keys using OpenSSL. If you’re on
Windows, grab a binary from https://www.openssl.org/related/binaries.html. It should
come preinstalled on Mac OS X. If you’re on a Linux machine with a package manager
(like Arch, Gentoo, Ubuntu, or Debian) and it’s not already installed, install it with your
OS’s package manager. You can check if OpenSSL is installed by typing openssl version
at your command prompt. From there, you’ll run the following two commands:

openssl genrsa -out privatekey.pem 1024
openssl req -new -key privatekey.pem -out request.pem

The first command generates your private key into privatekey.pem; anyone can do this.
The next command generates a certificate-signing request. It’ll ask you a bunch of
information and then spit out a file into request.pem. From here, you have to request
a certificate from a CA. Several groups on the internet are working on Let’s Encrypt, a
free and automated CA. You can check out the service at https://letsencrypt.org/. If
you’d prefer a different certificate authority, you can shop around online.

 Once you have a certificate, you can use Node’s built-in HTTPS module with
Express, as shown in the following listing. It’s very similar to the HTTP module, but
you’ll have to supply your certificate and private key.
Licensed to <miler.888@gmail.com>

https://www.openssl.org/related/binaries.html
https://letsencrypt.org/

80 CHAPTER 5 Routing
var express = require("express");
var https = require("https");
var fs = require("fs");

var app = express();
// ... define your app ...

var httpsOptions = {
 key: fs.readFileSync("path/to/private/key.pem"),
 cert: fs.readFileSync("path/to/certificate.pem")
};
https.createServer(httpsOptions, app).listen(3000);

Other than the fact that you have to pass the private key and certificate as arguments,
this is very similar to the http.createServer you’ve seen before. If you want to run both
an HTTP server and an HTTPS server, start both, as shown next.

var express = require("express");
var http = require("http");
var https = require("https");
var fs = require("fs");

var app = express();

// ... define your app ...

var httpsOptions = {
 key: fs.readFileSync("path/to/private/key.pem"),
 cert: fs.readFileSync("path/to/certificate.pem")
};
http.createServer(app).listen(80);
https.createServer(httpsOptions, app).listen(443)

All you need do is run both servers on different ports, and you’re finished. That’s HTTPS.

5.6 Putting it all together: a simple routing demo
Let’s take what you’ve learned and build a simple web application that returns the
temperature by your United States ZIP Code.

NOTE I’m an American, so this example will use the US-style postal code,
called a ZIP Code. ZIP Codes are five digits long and can give you a pretty
good ballpark location. There are 42,522 of them, and the United States cov-
ers 3.7 million square miles, so each ZIP Code covers about 87 square miles
on average. Because we’re going to use ZIP Codes, this example will work only
in the United States. It shouldn’t be too much of a stretch to make a similar
application that works elsewhere (if you’re inspired, you could try using the
HTML5 Geolocation API).

Listing 5.14 Using HTTPS with an Express app

Listing 5.15 Using HTTP and HTTPS with Express

Requires the
modules you need

Defines an object
that contains your
private key and your
certificate

Passes that object into
https.createServer
Licensed to <miler.888@gmail.com>

81Putting it all together: a simple routing demo
This application will have two parts: a homepage that asks the user for their ZIP Code
and a route that sends the temperature as JSON.

 Let’s get started.

5.6.1 Setting up

For this application, you’ll use four Node packages: Express (obviously), ForecastIO
(for grabbing weather data from the free API called Forecast.io), Zippity-do-dah (for
turning ZIP Codes into latitude/longitude pairs), and EJS (for rendering HTML views).
(These are some pretty good names, right? Especially Zippity-do-dah.)

 Make a new Express application. You’ll want to make sure the package.json looks
something like the following listing when it’s time to start.

{
 "name": "temperature-by-zip",
 "private": true,
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "ejs": "^2.3.1",
 "express": "^5.0.0",
 "forecastio": "^0.2.0",
 "zippity-do-dah": "0.0.x"
 }
}

Make sure you have all of these dependencies installed by running npm install in
your application’s directory.

 On the client, you’ll depend on jQuery and a minimal CSS framework called Pure
(http://purecss.io/). It’s likely that you already know about jQuery, but Pure is a bit
more obscure (most everything is more obscure than jQuery). Pure gives you a little
bit of styling for text and forms, similar to Twitter’s Bootstrap. The difference with
Pure is that it’s far more lightweight, which better suits this kind of application.

 Make two directories: one called public and one called views.
 Next, get an API key from Forecast.io at https://developer.forecast.io. Register for

an account. At the bottom of the dashboard page is your API key, which is a string of
32 characters. You’ll need to copy this API key into your code in just a moment, so
make sure you have it available. You’re now ready to get started.

5.6.2 The main app code

Now that you’re all set up, it’s time to code. Let’s start with the main application
JavaScript. If you followed the example at the end of chapter 2, this business should
be familiar. Create app.js and put the code from the following listing inside it.

Listing 5.16 package.json for this application
Licensed to <miler.888@gmail.com>

http://purecss.io/
https://developer.forecast.io

82 CHAPTER 5 Routing

Creat
Exp

applic
ect
ey

Se
s

file
of p

l
da
var path = require("path");
var express = require("express");
var zipdb = require("zippity-do-dah");
var ForecastIo = require("forecastio");

var app = express();
var weather = new ForecastIo("YOUR FORECAST.IO API KEY HERE");

app.use(express.static(path.resolve(__dirname, "public")));

app.set("views", path.resolve(__dirname, "views"));
app.set("view engine", "ejs");

app.get("/", function(req, res) {
 res.render("index");
});

app.get(/^\/(\d{5})$/, function(req, res, next) {
 var zipcode = req.params[0];
 var location = zipdb.zipcode(zipcode);
 if (!location.zipcode) {
 next();
 return;
 }

 var latitude = location.latitude;
 var longitude = location.longitude;

 weather.forecast(latitude, longitude, function(err, data) {
 if (err) {
 next();
 return;
 }

 res.json({
 zipcode: zipcode,
 temperature: data.currently.temperature
 });
 });
});

app.use(function(req, res) {
 res.status(404).render("404");
});

app.listen(3000);

Now you need to fill in the client. This means making some views with EJS, and as
you’ll see, you’ll add a splash of CSS and a bit of client-side JavaScript.

Listing 5.17 app.js

Includes Node’s built-in path
module, Express, Zippity-do-dah,
and ForecastIOes an

ress
ation Creates an

ForecastIO obj
with your API k

rves
tatic
s out
ublic Uses EJS as the view

engine, and serves the
views out of a views folder

Renders the index
view if you hit the
homepage

Captures the specified
ZIP Code and passes it
as req.params[0]

Grabs
ocation
ta with
the ZIP

Code
Returns {} when no results
are found. Continues if the
object isn’t empty.

Sends this JSON
object with Express’s
json method

Shows a 404 error
if no other routes
are matched

Starts the app
on port 3000
Licensed to <miler.888@gmail.com>

83Putting it all together: a simple routing demo
5.6.3 The two views

There are two views in this application: the 404 page and the homepage. You want
your site to look consistent across pages, so make a template. You’ll need to make a
header and a footer.

 Let’s start with the header. Save the following listing into a file called header.ejs.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Temperature by ZIP code</title>
 <link rel="stylesheet" href="http://yui.yahooapis.com/pure/0.4.2/pure-

min.css">
 ➥ <link rel="stylesheet" href="/main.css">
</head>
<body>

Next, close off the page in footer.ejs, as shown in the next listing.

</body>
</html>

Now that you have your template, you can fill in the simple 404 page (as 404.ejs), as
shown in the next listing.

<% include header %>
 <h1>404 error! File not found.</h1>
<% include footer %>

The index homepage isn’t too complex, either. Save it as index.ejs.

<% include header %>

<h1>What’s your ZIP code?</h1>

<form class="pure-form">
 <fieldset>
 <input type="number" name="zip" placeholder="12345"
 ➥ autofocus required>
 <input type="submit" class="pure-button
 ➥ pure-button-primary" value="Go">
 </fieldset>
</form>

Listing 5.18 views/header.ejs

Listing 5.19 views/footer.ejs

Listing 5.20 views/404.ejs

Listing 5.21 views/index.ejs
Licensed to <miler.888@gmail.com>

84 CHAPTER 5 Routing
<script src="//ajax.googleapis.com/ajax/libs/

➥ jquery/2.1.1/jquery.min.js"></script>
<script src="/main.js"></script>

<% include footer %>

There are a couple of references to the Pure CSS framework in the index code; all
they do is apply styling so your page looks a little better.

 Speaking of styling, you’ll need to fill in main.css that you specified in the layout.
Save the code in the following listing into public/main.css.

html {
 display: table;
 width: 100%;
 height: 100%;
}
body {
 display: table-cell;
 vertical-align: middle;
 text-align: center;
}

This CSS effectively centers the page’s content, both horizontally and vertically. This
isn’t a CSS book, so don’t worry if you don’t understand exactly what’s going on here.

 Now you have everything other than your client-side JavaScript. You can try to npm
start this app right now. You should be able to see the homepage at http://local-
host:3000 and the 404 page at http://localhost:3000/some/garbage/url, and the
weather should load 12345’s temperature as JSON at http://localhost:3000/12345.

 Finish it off with your client-side JavaScript, as shown in the next listing. Save this
stuff in public/main.js.

$(function() {

 var $h1 = $("h1");
 var $zip = $("input[name='zip']");

 $("form").on("submit", function(event) {

 event.preventDefault();

 var zipCode = $.trim($zip.val());
 $h1.text("Loading...");

 var request = $.ajax({
 url: "/" + zipCode,
 dataType: "json"
 });

Listing 5.22 public/main.css

Listing 5.23 public/main.js

Prevents the form
from submitting
normally

Sends an AJAX
request
Licensed to <miler.888@gmail.com>

http://localhost:3000
http://localhost:3000
http://localhost:3000/some/garbage/url
http://localhost:3000/12345

85Summary
 request.done(function(data) {
 var temperature = data.temperature;
 $h1.html("It is " + temperature + "° in " + zipCode + ".");
 });
 request.fail(function() {
 $h1.text("Error!");
 });

 });

});

The key part of this is the AJAX request that’s sent to your server. If you’ve typed 12345
into the ZIP Code field, you’ll make a request to /12345.

5.6.4 The application in action

With that, you can start the application with npm start. Visit http://localhost:3000,
type in a ZIP Code, and watch the temperature appear, as shown in figure 5.1.

That’s your simple application. It takes advantage of Express’s helpful routing features
and serves HTML views, JSON, and static files.

 If you’d like, you can extend this application to work with more than US ZIP Codes,
or show more than the temperature, or add API documentation, or add better error
handling, or maybe more!

5.7 Summary
■ Routing is a mapping of an HTTP verb (like GET or POST) and a URI (like

/users/123).
■ Routing can map to a simple string. It can also match against patterns or regu-

lar expressions.

When the request succeeds,
update the header with the

current temperature.

° is the HTML
character code for the

degree symbol.

If there’s an error,
make sure that an
error is shown.

Figure 5.1 Temperature by
ZIP Code in action
Licensed to <miler.888@gmail.com>

http://localhost:3000

86 CHAPTER 5 Routing
■ Express has the ability to parse query strings.
■ As a convenience, Express has a built-in middleware for serving static files.
■ Routers can be used to split your application into many smaller applications,

which is useful for code organization.
■ You can use Express with HTTPS by starting the server with your certificates.
Licensed to <miler.888@gmail.com>

Building APIs
Friends, gather round. This chapter marks a new beginning. Today, we exit the
abstract but critical core Express and enter the real world. For the rest of this book,
we’ll be building much more real systems atop Express. We’ll start with APIs.

 API is a pretty broad term. It stands for application programming interface,
which doesn’t demystify the term much. If it were up to me (obviously it isn’t), I’d
rename it something like software interface. A UI is meant to be consumed by
human users, but a software interface is meant to be consumed by code. At some
level, all UIs sit on top of software interfaces—that is, on top of some APIs.

 At a high level, APIs are ways for one piece of code to talk to another piece of
code. This could mean a computer talking to itself or a computer talking to
another computer over a network. For example, a video game might consume an
API that allows the code to draw graphics to the screen. You’ve seen a few methods

This chapter covers
■ Using Express to build an API
■ HTTP methods and how they respond to

common CRUD operations
■ Versioning your API using Express’s routers
■ Understanding HTTP status codes
87

Licensed to <miler.888@gmail.com>

88 CHAPTER 6 Building APIs
available in the Express API, like app.use or app.get. These are interfaces that you as
a programmer can use to talk to other code.

 There are also computer-to-computer APIs. These happen over a network and usu-
ally over the internet. These computers may be running different programming lan-
guages and/or different OSes, so common ways have been developed for them to
communicate. Some send plain text, others might choose JSON or XML. They might
send things over HTTP or over another protocol like FTP. Either way, both parties have
to agree that they’re going to send data a certain way. In this chapter, the APIs you cre-
ate will use JSON.

 We’ll talk about APIs that interact that you can build with Express. These APIs will
take HTTP requests and respond with JSON data.

 By the end of this chapter, other programmers will be able to build applications
that use your JSON APIs. We’ll also discuss how to design good APIs. The core principle
behind good API design is to do what developers consuming your API expect. You can
meet most of these expectations by following the HTTP specification. Rather than
instruct you to read a long, dry (but very interesting) specification document, I’ll tell
you the parts you need to know so that you can write a good API.

 Just like the nebulous concepts of good code versus bad code, there aren’t a lot of
hard lines in the sand here. A lot of this is open to your interpretation. You could
come up with many examples where you might want to deviate from these estab-
lished best practices, but remember: the goal is to do what other developers expect.
Let’s get started.

6.1 A basic JSON API example
Let’s talk about a simple JSON API and how it could be used so that you see a concrete
example of the kind of thing you’ll be building.

 Imagine a simple API that takes a time zone string like "America/Los_Angeles" or
"Europe/London" and returns a string that represents the current time in that time
zone (like "2015-04-07T20:09:58-07:00"). Notice that these strings aren’t things
that a human would naturally type or be able to easily read—they’re for a computer
to understand.

 Your API might accept an HTTP request to this URL:

/timezone?tz=America+Los_Angeles

and your API server might respond with JSON, like this:

{
 "time": "2015-06-09T16:20:00+01:00",
 "zone": "America/Los_Angeles"
}

You could imagine writing simple applications that used this API. These applications
could run on a variety of platforms, and as long as they communicated with this API and
could parse JSON (which most platforms can), they could build whatever they wanted.
Licensed to <miler.888@gmail.com>

89A basic JSON API example
You could build a simple web page that consumed
this API, as shown in figure 6.1. It might send AJAX
requests to your server, parse the JSON, and display it
in the HTML.

 You could also build a mobile application, as shown
in figure 6.2. It would make a request to your API
server, parse the JSON, and display the results on the
screen.

 You could even build a command-line tool that runs
in the terminal, like in figure 6.3. Once again, it would
make a request to the API server, parse the JSON, and
display the results for humans in the terminal.

 The point is this: if you make an API that takes
requests from computers and spits out responses for
computers (not humans), you can build UIs atop that
API. You did this in the previous chapter with the
weather app—it used an API to get weather data and
display it to the user.

Figure 6.2 A mobile app that
uses your API

Figure 6.1 A website that
consumes our JSON API

Figure 6.3 Terminal-based
applications can consume a
JSON API.
Licensed to <miler.888@gmail.com>

90 CHAPTER 6 Building APIs
6.2 A simple Express-powered JSON API
Now that you know what an API is, let’s build a simple one with Express. The funda-
mentals of an Express API are pretty straightforward: take a request, parse it, and
respond with a JSON object and an HTTP status code. You’ll use middleware and rout-
ing to take requests and parse them, and you’ll use Express’s conveniences to respond
to requests.

NOTE Technically, APIs don’t have to use JSON—they can use other data
interchange formats like XML or plain text. JSON has the best Express integra-
tion, plays nicely with browser-based JavaScript, and is one of the most popu-
lar API choices, so we’ll use it here. You can use other formats if you want to.

Let’s build a simple API that generates random integers. This might seem a bit of a
contrived example, but you might want a consistent random number generator across
multiple platforms (iOS, Android, web, and more) and you don’t want to write the
same code. The API will have these characteristics:

■ Anyone who requests the API must send a minimum value and a maximum value.
■ Your service will parse those values, calculate your random number, and send it

back as JSON.

You might think that JSON is overkill for this situation—why not stick to plain text?—
but sending JSON is a skill we’ll need and we want to make it easy to expand your func-
tionality later.

 To build this project, you’ll follow these steps:

1 Create a package.json to describe the metadata of your app.
2 Create a file called app.js, which will contain all of your code.
3 Create an Express application in app.js and attach a single route that gives a

random number.

Let’s get started. As usual, to start a project, make a new folder and create a pack-
age.json. You can create this file by running npm init or you can manually type out the
file. In any case, you’ll want to create it and install Express. Your package.json should
look something like the following listing.

{
 "name": "random-number-api",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "^5.0.0"
 }
}

Listing 6.1 package.json for your random number project

Your package version
numbers may vary.
Licensed to <miler.888@gmail.com>

91A simple Express-powered JSON API
Next, you’ll want to create app.js. Create it in the root of your project and put the fol-
lowing code inside.

var express = require("express");

var app = express();

app.get("/random/:min/:max", function(req, res) {
 var min = parseInt(req.params.min);
 var max = parseInt(req.params.max);

 if (isNaN(min) || isNaN(max)) {
 res.status(400);
 res.json({ error: "Bad request." });
 return;
 }

 var result = Math.round((Math.random() * (max - min)) + min);

 res.json({ result: result });
});

app.listen(3000, function() {
 console.log("App started on port 3000");
});

If you start this app and visit http://localhost:3000/random/10/100, you’ll see a JSON
response with a random number between 10 and 100. It will look something like fig-
ure 6.4.

Let’s step through this code. The first two lines require Express and create a new
Express application, as you’ve seen before.

 Next, you create a route handler for GET requests. This will take requests like
/random/10/100, or /random/50/52, but it will also handle requests like /ran-
dom/foo/bar. You’ll have to make sure that both fields are numbers, and you’ll do
that soon.

 Next, you parse out the numbers using the built-into-JavaScript parseInt function.
This function either returns a number or NaN. If either of the values is NaN, you show

Listing 6.2 Your random number app

Passes two
parameters in the
URL of the request

Does error checking.
If either number is
malformed, responds
with an error.

Calculates
and sends
the result
as JSON

Figure 6.4 Testing your
API in your browser. Try
refreshing and you’ll see
different numbers.
Licensed to <miler.888@gmail.com>

http://localhost:3000/random/10/100

92 CHAPTER 6 Building APIs
an error to the user. Let’s look at these five lines in detail, in the listing that follows,
because they’re pretty important.

if (isNaN(min) || isNaN(max)) {
 res.status(400);
 res.json({ error: "Bad request." });
 return;
}

The first line checks if either of the numbers is NaN, meaning it’s badly formatted. If
it is, you do three things:

1 Set the HTTP status code to 400. If you’ve ever seen a 404 error, this is only a vari-
ant: it signals that something about the user’s request was bad. We’ll talk more
about it later in this chapter.

2 Send a JSON object. In this case, you send an object that has the error.
3 Return. If you didn’t return, you’d continue on to the rest of the function and

you’d send the request twice, and Express would start throwing nasty errors.

As a final step, you calculate the result and send it as JSON.
 This is a pretty basic API, but it shows the fundamentals of building an API with

Express: parsing requests, setting HTTP status codes, and sending JSON.
 Now that you know the fundamentals, you can start learning more about building

bigger, better APIs.

6.3 Create, read, update, delete APIs
There’s a common application pattern: create, read, update, and delete. It’s short-
ened to CRUD, which is a fun word.

 Lots of applications use CRUD. For example, imagine a photo-sharing app that has
no user accounts; anyone can upload photos. Here’s how you might envision that in
CRUD style:

■ Users can upload photos; this is the create step.
■ Users can browse photos; this is the read part.
■ Users can update photos, perhaps by giving them different filters or changing

captions; this would be an update.
■ Users can delete photos from the website. This would be, well, a delete.

You could imagine lots of your favorite applications fitting into this model, from
photo sharing to social networks to file storage.

 Before we can talk about how CRUD fits into APIs, we need to talk about something
called HTTP methods, also known as HTTP verbs.

Listing 6.3 Drilling down into the error handler
Licensed to <miler.888@gmail.com>

93Create, read, update, delete APIs
6.3.1 HTTP verbs (also known as HTTP methods)

The HTTP spec defines methods like this:

The Method token indicates the method to be performed on the resource
identified by the Request-URI. The method is case-sensitive.

Ugh, that’s hard to read.
 A human might understand it this way: a client sends an HTTP request to the

server with a method. The client can choose any method it wants, but there are a
handful that are used. The server sees that method and responds accordingly.

 There’s nothing baked into HTTP that prevents it from defining any method you
want, but web applications typically use the following four:

■ GET—The most common HTTP method anyone uses. As the name suggests, it
gets resources. When you load someone’s homepage, you GET it. When you
load an image, you GET it. GET methods shouldn’t change the state of your app;
the other methods do that.

Idempotence is important to GET requests. Idempotent is a fancy word that
means doing it once should be no different than doing it many times. If you
GET an image once and refresh 500 times, the image should never change. The
response can change—a page could change based on a changing stock price or
a new time of day—but GETs shouldn’t cause that change. That’s idempotent.

■ POST—Generally used to request a change to the state of the server. You POST a
blog entry; you POST a photo to your favorite social network; you POST when
you sign up for a new account on a website. POST is used to create records on
servers, not modify existing records.

POST is also used for actions, like buy this item. Unlike GET, POST is non-
idempotent. That means that the state will change the first time you POST, and
the second time, and the third time, and so on.

■ PUT—A better name might be update or change. If I’ve published (POSTed) a
job profile online and later want to update it, I would PUT those changes. I
could PUT changes to a document, or to a blog entry, or to something else.
(You don’t use PUT to delete entries, though; that’s what DELETE is for, as
you’ll see.)

PUT has another interesting part; if you try to PUT changes to a record that
doesn’t exist, the server can (but doesn’t have to) create that record. You prob-
ably wouldn’t want to update a profile that doesn’t exist, but you might want to
update a page on a personal website whether or not it exists.

PUT is idempotent. Let’s say I’m “Evan Hahn” on a website but I want to
change it to Max Fightmaster. I don’t PUT “change name from Evan Hahn to
Max Fightmaster”; I PUT “change my name to Max Fightmaster”; I don’t care
what it was before. This allows it to be idempotent. I could do this once or 500
times, and my name would still be Max Fightmaster. It is idempotent in this way.
Licensed to <miler.888@gmail.com>

94 CHAPTER 6 Building APIs
■ DELETE—Probably the easiest to describe because its name is obvious. Like PUT,
you basically specify DELETE record 123. You could DELETE a blog entry, or
DELETE a photo, or DELETE a comment.

DELETE is idempotent in the same way that PUT is. Let’s say I’ve accidentally
published (POSTed) an embarrassing photo of me wearing a lampshade over
my head. If I don’t want it on there, I can DELETE it. Now it’s gone! It doesn’t
matter whether I ask for it to be deleted once or 500 times; it’s going to be
gone. (Phew!)

There’s nothing that strictly enforces these constraints—you could theoretically use
GET requests to do what POST requests should do—but it’s bad practice and against
the HTTP specification. It’s not what people expect. Many browsers also have different
behaviors depending on the type of HTTP request, so you always make an effort to use
the right ones.

 HTTP specifies a number of other verbs, but I’ve never had a need to stray very far
from those four.

VERBS OR METHODS? The specification for HTTP 1.0 and 1.1 uses the word
method when describing this concept, so I suppose that’s technically correct.
Verb is also used. For our purposes, I’ll mostly call them verbs because that’s
what the Express documentation says. Know that you can use both (and that
the nitpicky should call them methods).

In Express, you’ve already seen how to handle different HTTP verbs. To refresh your
memory, the next listing contains a simple application that responds to each different
verb with a little message.

var express = require("express");

var app = express();

app.get("/", function(req, res) {
 res.send("you just sent a GET request, friend");
});

app.post("/", function(req, res) {
 res.send("a POST request? nice");
});

app.put("/", function(req, res) {
 res.send("i don’t see a lot of PUT requests anymore");
});

app.delete("/", function(req, res) {
 res.send("oh my, a DELETE??");
});

app.listen(3000, function() {
 console.log("App is listening on port 3000");
});

Listing 6.4 Handling different HTTP verbs
Licensed to <miler.888@gmail.com>

95Create, read, update, delete APIs
If you start this application (if it’s saved as app.js, run node app.js), you can use the
handy cURL command-line tool to try sending different requests. cURL sends GET
requests by default, but you can use its -X argument to send other verbs. For example,
curl -X PUT http://localhost:3000 will send a PUT request. Figure 6.5 shows how
this looks.

This should all be review from previous chapters: you can handle different HTTP
methods with different handlers.

6.3.2 CRUD applications with HTTP methods

Recalling our photo-sharing app, here’s how you might envision that in CRUD style:

■ Users can upload photos; this is the create step.
■ Users can browse photos; this is the read part.
■ Users can update photos, perhaps by giving them different filters or changing

captions; this is an update.
■ Users can delete photos from the website; this is the delete part.

If you’re like me, you didn’t immediately see the connection between CRUD and the
four main HTTP verbs I listed previously. But if GET is for reading resources, and POST
is for creating resources...whoa! You realize the following:

■ Create corresponds to POST
■ Read corresponds to GET
■ Update corresponds to PUT
■ Delete corresponds to DELETE

The four main HTTP methods lend themselves pretty well to CRUD-style applications,
which are very common on the web.

Figure 6.5 Using the cURL tool to
send different requests to our server
Licensed to <miler.888@gmail.com>

http://localhost:3000

96 CHAPTER 6 Building APIs
6.4 API versioning
Let me walk you through a scenario. You design a public API for your time zone app
and it becomes a big hit. People all over the world are using it to find times all across
the globe. It’s working well.

 But, after a few years, you want to update your API. You want to change something,
but there’s a problem: if you make changes, all of the people using your API will have
to update their code. What do you do? Do you make the changes you want to make
and break old users, or does your API stagnate and never stay up to date?

 There’s a solution to all of this: version your API. All you have to do is add version
information to your API. So a request that comes into this URL might be for version 1
of your API

/v1/timezone

and a request coming into version 2 of your API might visit this URL:

/v2/timezone

This allows you to make changes to your API by simply making a new version. Now, if
someone wants to upgrade to version 2, they’ll do it by consciously changing their
code, not having a version pulled out from under them.

 Express makes this kind of separation pretty easy through its use of routers, which
you saw in the previous chapter. To create version 1 of your API, you can create a
router that handles that version exclusively. The file might be called api1.js and look
like the following listing.

POST vs. PUT
There’s a little bit of debate about which HTTP verbs correspond to which CRUD oper-
ations. Most people agree that read corresponds to GET and delete corresponds to
DELETE, but create and update are murkier.

Because PUT can create records just like POST can, you could say that PUT better
corresponds to create. PUT can create and update records, so why not put it in
both spots?

Similarly, the PATCH method (which we haven’t yet mentioned) sometimes takes the
update role. To quote the specification, “the PUT method is already defined to over-
write a resource with a complete new body, and cannot be reused to do partial
changes.” PATCH allows you to partially overwrite a resource. PATCH was only for-
mally defined in 2010, so it’s relatively new on the HTTP scene, which is why it’s less
used. In any case, some people think PATCH is better suited to update than PUT.

Because HTTP doesn’t specify this stuff too strictly, it’s up to you to decide what you
want to do. In this book, we’ll be using the convention shown previously, but know
that the expectations are a little murky here.
Licensed to <miler.888@gmail.com>

97API versioning
var express = require("express");

var api = express.Router();

api.get("/timezone", function(req, res) {
 res.send("Sample response for /timezone");
});

api.get("/all_timezones", function(req, res) {
 res.send("Sample response for /all_timezones");
});

module.exports = api;

Notice that v1 doesn’t appear anywhere in the routes. To use this router in your app,
you’ll create a full application and use the router from your main app code. It might
look like the next listing.

var express = require("express");

var apiVersion1 = require("./api1.js");

var app = express();

app.use("/v1", apiVersion1);

app.listen(3000, function() {
 console.log("App started on port 3000");
});

Many moons later, you decide to implement version 2 of your API. It might live in
api2.js. It would also be a router, just like api1.js, and might look like the following
listing.

var express = require("express");

var api = express.Router();

api.get("/timezone", function(req, res) {
 res.send("API 2: super cool new response for /timezone");
});

module.exports = api;

Now, to add version 2 of your API to the app, simply require and use it just like ver-
sion 1, as shown in this listing.

Listing 6.5 Version 1 of your API, in api1.js

Listing 6.6 The main app code in app.js

Listing 6.7 Version 2 of your API, in api2.js

Creates a new router,
a miniapplication

Example routes. You
can add whatever
routes or middleware
you want.

Exports the router
so that other files
can use it

Requires and uses the
router, as you saw in
the previous chapter

Example
routes
Licensed to <miler.888@gmail.com>

98 CHAPTER 6 Building APIs
var express = require("express");

var apiVersion1 = require("./api1.js");
var apiVersion2 = require("./api2.js");

var app = express();

app.use("/v1", apiVersion1);
app.use("/v2", apiVersion2);

app.listen(3000, function() {
 console.log("App started on port 3000");
});

You can try visiting these new URLs in your browser to make sure that the versioned
API works, as shown in figure 6.6.

 You can also use the cURL tool to test your app at the command line, as shown in
figure 6.7.

 As you saw in the previous chapter, routers let you segment different routes into
different files. Versioned APIs are a great example of the utility of routers.

Listing 6.8 The main app code in app.js

Two new lines.
It’s just like using
version 1 of the
router.

Figure 6.6 Testing the two
API versions in your browser
Licensed to <miler.888@gmail.com>

99Setting HTTP status codes
6.5 Setting HTTP status codes
Every HTTP response comes with an HTTP status code. The most famous one is 404,
which stands for “resource not found.” You’ve likely seen 404 errors when visiting a
URL that the server can’t find—maybe you’ve clicked an expired link or typed a URL
incorrectly.

 Although 404 is the most famous, 200, defined as OK, is perhaps the most com-
mon. Unlike 404, you don’t usually see the text 200 on the web page when you’re
browsing the web. Every time you successfully load a web page or an image or a JSON
response, you probably get a status code of 200.

 There are a lot more HTTP status codes than 404 and 200, each with a different
meaning. There are a handful of 100 codes (like 100 and 101) and several in the 200s,
300s, 400s, and 500s. The ranges aren’t filled; that is, the first four codes are 100, 101,
102, skipping all the way to 200.

 Each range has a certain theme. Steve Losh sent a great tweet that summarizes
them (which I had to paraphrase a bit), as told from the perspective of the server:

HTTP status ranges in a nutshell:
1xx: hold on
2xx: here you go
3xx: go away
4xx: you messed up
5xx: I messed up

@stevelosh, https://twitter.com/stevelosh/status/372740571749572610

I love that summary. (The real one is a bit more vulgar.)
 Beyond the 60 or so codes in the specification (https://tools.ietf.org/html/

rfc7231-section-6), HTTP doesn’t define any more. You can specify your own—HTTP
allows it—but it typically isn’t done. Remember the first principle of good API design;
defining your own HTTP status codes wouldn’t be what people expect. People expect
you to stick to the usual suspects.

 Wikipedia has a great list of every standard (and some nonstandard) HTTP
response code at https://en.wikipedia.org/wiki/List_of_HTTP_status_codes, but there
are a few that pertain to building an API with Express. We’ll go through each range
and explain common HTTP codes you should be setting in your applications.

Figure 6.7 Testing your versioned
API using the cURL command-line tool
Licensed to <miler.888@gmail.com>

https://twitter.com/stevelosh/status/372740571749572610
https://tools.ietf.org/html/rfc7231-section-6
https://tools.ietf.org/html/rfc7231-section-6
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

100 CHAPTER 6 Building APIs
WHAT ABOUT HTTP 2? Most HTTP requests are HTTP 1.1 requests, with a
handful of them still using version 1.0. HTTP 2, the next version of the stan-
dard, is slowly being implemented and rolled out across the web. Luckily,
most of the changes happen at a low level and you don’t have to deal with
them. HTTP 2 does define one new status code—421—but that shouldn’t
affect you much.

But first, how do you set HTTP status codes in Express?

6.5.1 Setting HTTP status codes

In Express, the default status code is 200. If a user visits a URL where no resource is
found and your server doesn’t have a request handler for it, Express will send a 404
error. If you have some other error in your server, Express will send a 500 error.

 But you want to have control of what status code you get, so Express gives it to you.
Express adds a method called status to the HTTP response object. All you have to do
is call it with the number of your status code and you’ll be in business.

 This method might be called inside a request handler as shown in the follow-
ing listing.

// …

res.status(404);

// …

This method is chainable, so you can pair it with things like the json to set the status
code and send some JSON in one line, as shown in the next listing.

res.status(404).json({ error: "Resource not found!" });

// This is equivalent to:
res.status(404);
res.json({ error: "Resource not found!" });

The API isn’t too complicated.
 Express extends the raw HTTP response object that Node gives you. Although you

should follow the Express way of doing things when you’re using Express, you might
be reading code that sets the status code, as in the next listing.

res.statusCode = 404;

Listing 6.9 Setting the HTTP status code in Express

Listing 6.10 Setting the HTTP status code and sending some JSON

Listing 6.11 Setting the status code the raw way
Licensed to <miler.888@gmail.com>

101Setting HTTP status codes
You sometimes see this code when reading through middleware or when someone is
using the raw Node APIs instead of the Express ones.

6.5.2 The 100 range

There are only two official status codes in the 100 range: 100 (Continue) and 101
(Switching Protocols). You’ll likely never deal with these yourself. If you do, check the
specification or the list on Wikipedia.

 Look at that! You are already one-fifth of the way through the status codes.

6.5.3 The 200 range

Steve Losh summarized the 200 range as “here you go.” The HTTP spec defines several
status codes in the 200 range, but four of them are by far the most common.

200: OK
200 is the most common HTTP status code on the web by a long shot. HTTP calls status
code 200 OK, and that’s pretty much what it means: everything about this request and
response went through just fine. Generally, if you’re sending the whole response just
fine and there aren’t any errors or redirects (which you’ll see in the 300s section),
then you’ll send a 200 code.

201: CREATED

Code 201 is very similar to 200, but it’s for a slightly different use case. It’s common for
a request to create a resource (usually with a POST or a PUT request). This might be
creating a blog post, sending a message, or uploading a photo. If the creation suc-
ceeds and everything’s fine, you’ll want to send a 201 code. This is a bit nuanced, but
it’s typically the correct status code for the situation.

202: ACCEPTED

Just as 201 is a variant of 200, 202 is a variant of 201.
 I hope I’ve beaten it into your head by now: asynchronousity is a big part of Node

and Express. Sometimes you’ll asynchronously queue a resource for creation but it
won’t be created yet.

 If you’re pretty sure that the request wants to create a valid resource (perhaps
you’ve checked that the data is valid) but you haven’t created it yet, you can send a 202
status code. It effectively tells the client, Hey, you’re all good, but I haven’t made the
resource yet.

 Sometimes you’ll want to send 201 codes and other times you’ll want to send 202;
it depends on the situation.

204: NO CONTENT

204 is the delete version of 201. When you create a resource, you typically send a 201
or a 202 message. When you delete something, you often don’t have anything to
respond with other than Yeah, this was deleted. That’s when you typically send a 204
code. There are a few other times when you don’t need to send any kind of response
back, but deletion is the most common use case.
Licensed to <miler.888@gmail.com>

102 CHAPTER 6 Building APIs
6.5.4 The 300 range

There are several status codes in the 300 range, but you’ll really only set three of
them, and they all involve redirects.

301: MOVED PERMANENTLY

HTTP status code 301 means Don’t visit this URL anymore; see another URL. 301
responses are accompanied with an HTTP header called Location, so you know where
to go next.

 You’ve probably been browsing the web and have been redirected—this probably
happened because of a 301 code. This usually occurs because the page has moved.

303: SEE OTHER

HTTP status code 303 is also a redirect, but it’s a bit different. Just like code 200 is for
regular requests and 201 is for requests where a resource is created, 301 is for regular
requests and 303 is for requests where a resource is created and you want to redirect
to a new page.

307: TEMPORARY REDIRECT

There’s one last redirect status code: 307. Like the 301 code, you’ve probably been
browsing the web and been redirected because of a 307 code. They’re similar, but they
have an important distinction. 301 signals Don’t visit this URL ever again; see another
URL; 307 signals See another URL just for now. This might be used for temporary main-
tenance on a URL.

6.5.5 The 400 range

The 400 range is the largest, and it generally means that something about the request
was bad. In other words, the client made a mistake and it’s not the server’s fault.
There are a lot of different errors here.

401 AND 403: UNAUTHORIZED AND FORBIDDEN ERRORS

There are two different errors for failed client authentication: 401 (Unauthorized)
and 403 (Forbidden). The words unauthorized and forbidden sound pretty similar—
what’s the difference?

 In short, a 401 error occurs when the user isn’t logged in. A 403 error occurs when
the user is logged in as a valid user, but they don’t have permissions to do what they’re
trying to do.

 Imagine a website where you couldn’t see any of it unless you logged in. This web-
site also has an administrator panel, but not all users can administer the site. Until you
logged in, you’ll see 401 errors. Once you logged in, you’ll stop seeing 401 errors. If
you tried to visit the administrator panel as a non-admin user, you’d see 403 errors.

 Send these response codes when the user isn’t authorized to do whatever they’re
doing.
Licensed to <miler.888@gmail.com>

103Summary
404: NOT FOUND

I don’t think I have to tell you much about 404—you’ve probably run into it when
browsing the web. One thing I found a little surprising about 404 errors is that you
can visit a valid route but still get a 404 error.

 For example, let’s say you want to visit a user’s page. The homepage for User #123
is at /users/123. But if you mistype and visit /users/1234 and no user exists with ID
1234, you’ll get a 404 error.

OTHER ERRORS

There are a lot of other client errors you can run into—far too many to enumerate
here. Visit the list of status codes at https://en.wikipedia.org/wiki/List_of_HTTP_
status_codes to find the right status code for you.

 When in doubt about which client error code to use, send a 400 Bad Request error.
It’s a generic response to any kind of bad request. Typically, it means that the request
has malformed input—a missing parameter, for example. Although there might be a
status code that better describes the client error, 400 will do the trick.

6.5.6 The 500 range

The final range in the HTTP specification is the 500 range, and although there are sev-
eral errors in this range, the most important one is 500: Internal Server Error. Unlike
400 errors, which are the client’s fault, 500 errors are the server’s fault. They can be for
any number of reasons, from an exception to a broken connection to a database error.

 Ideally, you should never be able to cause a 500 error from the client—that would
mean that your client could cause bugs in your server.

 If you catch an error and it really does seem to be your fault, then you can respond
with a 500 error. Unlike the rest of the status codes where you want to be as descriptive
as possible, it’s often better to be vague and say “Internal Server Error”; that way hack-
ers can’t know where the weaknesses in your system lie. We’ll talk much more about
this in chapter 10 when we talk about security.

6.6 Summary
■ An API in the context of Express is a web service that accepts requests and

returns structured data (JSON in many cases).
■ The fundamentals of building an API with Express involve using its JSON and

routing features heavily.
■ HTTP methods and how they relate to common application actions. GET typi-

cally corresponds to reading, POST typically corresponds to creation, PUT
typically corresponds to changing, and DELETE typically responds to removal.

■ Versioning your API is helpful for compatibility. Express’s router feature helps
you create different versions of your API.

■ There are lots of HTTP status codes (code 404 is perhaps the most famous). A
good API uses these status codes properly.
Licensed to <miler.888@gmail.com>

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Views and templates:
Pug and EJS
In the previous chapters, you learned what Express is, how Express works, and how
to use its routing feature. Starting in this chapter, you’re going to stop learning
about Express.

 Well, okay, not exactly. You’ll still be using Express to power your applications,
but as we’ve discussed so far, Express is unopinionated and requires a lot of third-
party accessories to make a full-fledged application. In this chapter and beyond,
you’ll start digging into some of these modules, learning how they work, and how
they can make your applications lovely.

 In this chapter we’ll talk about views, which give you a convenient way to dynam-
ically generate content (usually HTML). You’ve seen a view engine before; EJS has
helped you inject special variables into HTML. But although EJS provided a concep-
tual understanding of views, we never really explored everything that Express (and
the other view engines) had to offer. You’ll learn the many ways to inject values into

This chapter covers
■ Express’s view system
■ The EJS templating language
■ The Pug templating language
104

Licensed to <miler.888@gmail.com>

105Express’s view features
templates; see the features of EJS, Pug, and other Express-compatible view engines;
and explore subtleties in the world of views. Let’s get started.

JADE NOW PUG Pug was originally called Jade, but was changed for legal rea-
sons. The project has been renamed, but Jade is still used in a lot of code.
During the transition period, you’ll have to remember both names.

7.1 Express’s view features
Before I begin, let me define a term I’ll be using a lot: view engine. When I say view
engine, I basically mean “module that does the actual rendering of views.” Pug and
EJS are view engines, and there are many others.

 American singer-songwriter India Arie has an excellent song called “Brown Skin.”
About brown skin she sings, “I can’t tell where yours begins, I can’t tell where mine
ends.” Similarly, when I first started using Express views, I was confused where Express
ended and the view engines began. Luckily, it’s not too difficult.

 Express is unopinionated about which view engine you use. As long as the view
engine exposes an API that Express expects, you’re good to go. Express offers a conve-
nience function to help you render your views; let’s take a look.

7.1.1 A simple view rendering

You’ve seen simple examples of how to render views before, but in case you need a
refresher, the following listing provides an app that renders a simple EJS view.

var express = require("express");
var path = require("path");

var app = express();

app.set("view engine", "ejs");
app.set("views", path.resolve(__dirname, "views"));

app.get("/", function(req, res) {
 res.render("index"); });

app.listen(3000);

Once you’ve done an npm install of EJS (and Express, of course), this should work.
When you visit the root, it’ll find views/index.ejs and render it with EJS. You’ll do
something like this 99% of the time: one view engine all the time. But things can get
more complicated if you decide to mix things up.

7.1.2 A complicated view rendering

The next listing is a complex example of rendering a view from a response, using two
view engines: Pug and EJS. This should illustrate how crazy things can get.

Listing 7.1 Simple view rendering example

Tells Express that any
file ending in .ejs
should be rendered
with the ejs package

Tells Express where
the views folder is

Renders a file
called index when
you visit the root

Starts the server
on port 3000
Licensed to <miler.888@gmail.com>

106 CHAPTER 7 Views and templates: Pug and EJS
var express = require("express");
var path = require("path");
var ejs = require("ejs");

var app = express();

app.locals.appName = "Song Lyrics";

app.set("view engine", "jade");
app.set("views", path.resolve(__dirname, "views"));
app.engine("html", ejs.renderFile);

app.use(function(req, res, next) {
 res.locals.userAgent = req.headers["user-agent"];
 next();
});

app.get("/about", function(req, res) {
 res.render("about", {
 currentUser: "india-arie123"
 });
});

app.get("/contact", function(req, res) {
 res.render("contact.ejs");
});

app.use(function(req, res) {
 res.status(404);
 res.render("404.html", {
 urlAttempted: req.url
 });
});

app.listen(3000);

Here’s what happens when you call render in these three cases. Although it looks
complicated at a high level, it is only a number of straightforward steps:

1 Express builds up the context object every time you call render. These context objects
will get passed to the view engines when it’s time to render. These are effectively
the variables available to views.

It first adds all the properties from app.locals, an object available to every
request. Then it adds all the properties in res.locals, overwriting anything
added from app.locals if it was present. Finally, it adds the properties of the
object passed to render (once again overwriting any previously added proper-
ties). At the end of the day, if you visit /about, you’ll create a context object with
three properties: appName, userAgent, and currentUser. /contact will only have
appName and userAgent in its context; the 404 handler will have appName, user-
Agent, and urlAttempted.

Listing 7.2 Complex rendering example
Licensed to <miler.888@gmail.com>

107Express’s view features
2 You decide whether view caching is enabled. View caching might sound like Express
caches the entire view-rendering process, but it doesn’t; it caches only the
lookup of the view file and its assignment to the proper view engine. For exam-
ple, it will cache the lookup of views/my_view.ejs and figure out that this view
uses EJS, but it won’t cache the actual render of the view. A bit misleading.

It decides whether view caching is enabled in two ways, only one of which is
documented.

– The documented way—There’s an option that you can set on the app. If
app.enabled("view cache") is truthy, Express will cache the lookup of
the view. By default, this is disabled in development mode and enabled in
production, but you can change it yourself with app.enable("view
cache") or app.disable("view cache").

– The undocumented way—If the context object generated in the previous
step has a truthy property called cache, then caching will be enabled for
that view. This overrides any application settings. This enables you to
cache on a view-by-view basis, but I think it’s more important to know that
it’s there so that you can avoid doing it unintentionally.

3 You look up where the view file resides and what view engine to use. In this case, you
want to turn about into /path/to/my/app/views/about.jade + Pug and con-
tact.ejs into /path/to/my/app/views/contact.ejs + EJS. The 404 handler should
associate 404.html with EJS by looking at your earlier call to app.engine. If
you’ve already done this lookup and view caching is enabled, you’ll pull from
the cache and skip to the final step. If not, you’ll continue on.

4 If you don’t supply a file extension (as with about in the previous step) Express appends
the default you specify. In this case, “about” becomes about.jade but contact.ejs
and 404.html stay the same. If you don’t supply an extension and don’t supply a
default view engine, Express will throw an error. Otherwise, it’ll continue on.

5 Express looks at your file extension to determine which engine to use. If it matches any
engine you’ve already specified, it will use that. In this case, it will match Pug for
about.jade because it’s the default. contact.ejs will try to require("ejs") based
on the file extension. You explicitly assigned 404.html to EJS’s renderFile func-
tion, so it will use that.

6 Express looks the file up in your views directory. If it doesn’t find the file, it throws an
error, but it will continue if it finds something.

7 Express caches all the lookup logic if it should. If view caching is enabled, you cache
all this lookup logic for next time.

8 You render the view. This calls out to the view engine and is literally one line in
Express’s source code. This is where the view engine takes over and produces
actual HTML (or whatever you’d like).

This turns out to be a bit hairy, but the 99% case is pick one view engine and stick with
it, so you’re likely to be shielded from most of this complexity.
Licensed to <miler.888@gmail.com>

108 CHAPTER 7 Views and templates: Pug and EJS

Spe
your v

dire
7.1.3 Making all view engines compatible with Express: Consolidate.js

We’ve talked about view engines like EJS and Pug, but there are plenty more that you
might want to choose. You might have heard of Mustache, Handlebars, or Under-
score.js’s templating. You might also want to use a Node port of other templating lan-
guages like Jinja2 or HAML.

 Many of these view engines, such as EJS and Pug, will work with Express out of the
box. Others don’t have an Express-compatible API and need to be wrapped in some-
thing Express can understand.

 Enter Consolidate.js (https://github.com/tj/consolidate.js), a library that wraps a
ton of view engines to be compatible with Express. It has support for the classics like
EJS, Pug, Mustache, Handlebars, and Hogan. It supports a ton of others, too, in case
you’re using a more obscure/hipster view engine. You can see the whole list of sup-
ported engines on the project’s page.

 Let’s say you’re using Walrus, a JavaScript view engine that’s not compatible with
Express out of the box. You’ll need to use Consolidate to make this compatible with
Express.

 After installing Walrus and Consolidate (with npm install walrus consolidate),
you’ll be able to use Walrus with Express, as shown in the next listing.

var express = require("express");
var engines = require("consolidate");
var path = require("path");
var app = express();

app.set("view engine", "wal");
app.engine("wal", engines.walrus);
app.set("views", path.resolve(__dirname, "views"));

Rendering non-HTML views
Express’s default content type is HTML, so if you don’t do anything special, res.ren-
der will render your responses and send them to the client as HTML. Most of the
time, I find this to be enough. But it doesn’t have to be this way. You can render plain
text, XML, JSON, or whatever you want. Just change the content-type by changing the
parameter to res.type:

app.get("/", function(req, res) {
 res.type("text");
 res.render("myview", {
 currentUser: "Gilligan"
 });
});

There are often better ways to render some of these things—res.json, for example,
should be used instead of a view that renders JSON—but this is another way to do it.

Listing 7.3 Rendering with Walrus

Requires the Consolidate
library. Place it in a
variable called engines.

Specifies .wal files as your
default view file extension Associates .wal

files with the
Walrus view
engine

cifies
iews

ctory
Licensed to <miler.888@gmail.com>

https://github.com/visionmedia/consolidate.js

109Everything you need to know about EJS
app.get("/", function(req, res) {
 res.render("index"); });

app.listen(3000);

I recommend using Consolidate instead of trying to wrangle non-compatible view
engines yourself.

7.2 Everything you need to know about EJS
One of the simplest and most popular view engines out there is called EJS (Embedded
JavaScript.) It can do templating for simple strings, HTML, plain text—you name it. It
lightly integrates itself with whatever tool you use. It works in the browser and Node. If
you’ve ever used ERB from the Ruby world, you’ll find that EJS is very similar. In any
case, it’s pretty simple.

TWO VERSIONS OF EJS There are two versions of EJS maintained by two differ-
ent groups of people. They’re similar but not identical. The one we’ll be using
is by TJ Holowaychuck, the creator of Express. If you look for a package called ejs
on npm, this is the one you’ll find. But if you visit http://embeddedjs.com/,
you’ll find a very similar library with the same name. A lot of the functional-
ity is the same, but it’s a different library, last updated in 2009. It doesn’t work
in Node, and it has some debatably sexist sentences in its documentation.
Avoid it!

7.2.1 The syntax of EJS

EJS can be used for templating HTML, but it can be used for anything. Look at a short
bit of EJS in the following listing, and see what that looks like when you render it.

Hi <%= name %>!
You were born in <%= birthyear %>, so that means you’re

➥ <%= (new Date()).getFullYear() - birthyear %> years old.
<% if (career) { -%>
 <%=: career | capitalize %> is a cool career!
<% } else { -%>
 Haven’t started a career yet? That’s cool.
<% } -%>
Oh, let’s read your bio: <%- bio %> See you later!

If you pass the following context to EJS

{
 name: "Tony Hawk",
 birthyear: 1968,
 career: "skateboarding",
 bio: "Tony Hawk is the coolest skateboarder around."
}

Listing 7.4 An EJS template

Renders views/
index.wal
Licensed to <miler.888@gmail.com>

http://embeddedjs.com/

110 CHAPTER 7 Views and templates: Pug and EJS
then you’ll get the following result (as of 2015, anyway):

Hi Tony Hawk!
You were born in 1968, so that means you’re 47 years old.
Skateboarding is a cool career!
Oh, let’s read your bio: Tony Hawk is the coolest skateboarder around. See
you later!

This little example shows four major features of EJS: JavaScript that’s evaluated,
escaped, and printed; JavaScript that’s evaluated but not printed; JavaScript that’s
evaluated and printed (but not escaped for HTML); and filters.

 You can print the results of JavaScript expressions in two ways: <% expression %>
prints the result of the expression; <%- expression %> prints the result of the expres-
sion and escapes any HTML entities that might be inside. In general, I’d recommend
using the latter option when you can, because it’s more secure.

 You can also run arbitrary JavaScript and keep it from being printed. This is useful
for things like loops and conditionals, as you saw in the previous example. This is
done with <% expression %>. As you can see, you can use brackets to group loops and
conditionals across multiple lines. You can also avoid adding extraneous newlines with
<% expression -%> (note the hyphen at the end).

 Appending a colon (:) to an output will allow filters to be applied. Filters take the
output of an expression and filter it to change the output. The previous example used
the capitalization filter, but there are plenty of others, and you can define your own
(as you’ll see in just a moment).

NOTE If you want to play around with EJS, I made Try EJS (https://evanhahn
.github.io/try-EJS/), a simple browser app. I’ll admit it’s not polished, but it’s
sufficient for just messing with EJS in your browser and seeing the rendered
output.

INCLUDING OTHER EJS TEMPLATES WITHIN YOUR OWN

EJS also lets you include other EJS templates. This is incredibly useful because you can
add headers and footers to pages and split out common widgets, among other rea-
sons. If you find yourself writing the same code several times, it might be time to use
EJS’s include feature.

 Let’s look at two examples. First, let’s imagine you have pages that all share the same
header and footer. Rather than duplicate everything over and over again, you could cre-
ate a header EJS file, a footer EJS file, and your pages that go between the header and
footer. The following listing shows how a header file (saved at header.ejs) might look.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="/the.css">

Listing 7.5 A header EJS file
Licensed to <miler.888@gmail.com>

https://evanhahn.github.io/try-EJS/
https://evanhahn.github.io/try-EJS/

111Everything you need to know about EJS
 <title><%= appTitle %>/title>
</head>
<body>
 <header>
 <h1><%= appTitle %>
 </header>

Then, you’d define a footer in footer.ejs, as shown in the next listing.

<footer>
 All content copyright <%= new Date().getFullYear() %> <%= appName %>.
</footer>
</body>
</html>

Now that you’ve defined your header and footer, you can include it in subpages pretty
easily, as shown in the next listing.

<% include header %>
 <h1>Welcome to my page!</h1>
 <p>This is a pretty cool page, I must say.</p>
<% include footer %>

You use include to, well, include other EJS files. Notice that you don’t use <%= ... %>
or <%- ... %>; everything is finally printed by EJS, not you.

 You could also imagine using this to build a widget. Let’s say you had a widget that
showed user profiles. Given an object called user, this template would spit out HTML
for that user. The listing that follows shows how userwidget.ejs might look.

<div class="user-widget">
 <img src="<%= user.profilePicture %>">
 <div class="user-name"><%= user.name %></div>
 <div class="user-bio"><%= user.bio %></div>
</div>

Now you can use that template when rendering the current user

<% user = currentUser %>
<% include userwidget %>

or you can use it when rendering a list of users.

<% userList.forEach(function(user) { %>
 <% include userwidget %>
<% } %>

Listing 7.6 A footer EJS file

Listing 7.7 Including a header and footer from EJS

Listing 7.8 A user widget in userwidget.ejs
Licensed to <miler.888@gmail.com>

112 CHAPTER 7 Views and templates: Pug and EJS
EJS’s include is versatile; it can be used to create templates or to render subviews
many times.

ADDING YOUR OWN FILTERS

There are 22 built-in filters, ranging from mathematic operations to array/string
reversal to sorting. They’re often enough for your needs, but sometimes you’ll want to
add your own.

 Assuming you’ve required EJS into a variable called ejs, you simply add a property
to ejs.filters. If you’re frequently summing arrays, you might find it useful to make
your own custom array summer filter. The next listing shows how you might add such
a filter.

ejs.filters.sum = function(arr) {
 var result = 0;
 for (var i = 0; i < arr.length; i ++) {
 result += arr[i];
 }
 return result;
};

Now you can use it just like any other filter.

<%=: myarray | sum %>

Pretty simple. There are lots of filters you could dream up—code them as you need
them.

7.3 Everything you need to know about Pug
View engines like Handlebars, Mustache, and EJS don’t completely replace HTML—
they augment it with new features. This is really nice if you have designers, for exam-
ple, who’ve already learned HTML and don’t want to learn a whole new language. It’s
also useful for non-HTML-like templating solutions. If you’re in this sort of situation,
Pug is probably the wrong choice.

 But Pug offers other features. It allows you to write far fewer lines of code, and the
lines you write are much prettier. Doctypes are easy; tags are nested by indentation,
not close tags. It has a number of EJS-style features built into the language, like condi-
tionals and loops. It’s more to learn but more powerful.

7.3.1 The syntax of Pug

Languages like HTML are nested. There’s a root element (<html>) and then various
sub-elements (like <head> and <body>), which each have their own sub-elements ...
and so on. HTML and XML choose to have an open (<a>) and a close () for
each element.

Listing 7.9 Adding an EJS filter to sum an array
Licensed to <miler.888@gmail.com>

113Everything you need to know about Pug
 Pug takes a different approach by using indentation and a different syntax for
HTML. The next listing shows a simple web page that uses Pug.

doctype html
html(lang="en")
 head
 title Hello world!
 body
 h1 This is a Pug example
 #container
 p Wow.

This listing turns into the following HTML.

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Hello world!</title>
 </head
 <body>
 <h1>This is a Pug example</h1>
 <div id="container">
 <p>Wow.</p>
 </div>
 </body>
</html>

You can play around with Pug on the project’s homepage (http://jade-lang.com/)—
try experimenting to see what happens!

7.3.2 Layouts in Pug

Layouts are an important feature of any templating language. They allow you to
include, in one form or another, other HTML. This lets you define your header and
footer once and then include them on pages where you need them.

 A very common case is to define a layout file for your pages. That way, everything can
have a consistent header and footer while allowing the content to change per page.

 As a first step, you define the master layout. This is the Pug common to every page,
like a header and footer. This master layout defines empty blocks that are filled in by
any pages that use this master layout. The following listing is an example.

 This simple layout file will be shared by all of your pages.

Listing 7.10 A simple Pug example

Listing 7.11 Listing 7.10 rendered as HTML

Adding attributes
to elements looks
like function calls

Specifies no element,
so this is a div
Licensed to <miler.888@gmail.com>

http://jade-lang.com/

114 CHAPTER 7 Views and templates: Pug and EJS
doctype html
html

 head
 meta(charset="utf-8")
 title Cute Animals website
 link(rel="stylesheet" href="the.css")

 block header

 body

 h1 Cute Animals website

 block body

Notice how you defined two blocks with block header and block body. These will get
filled in by other Pug files that use this layout. Save that file into layout.jade. You can
use these in real pages that use this layout, like in the next listing.

extends layout.jade
block body
 p Welcome to my cute animals page!

That will render the following HTML.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Cute Animals website</title>
 <link rel="stylesheet" href="the.css">
 </head>
 <body>
 <h1>Cute Animals website</h1>
 <p>Welcome to my cute animals page!</p>
 </body>
</html>

Notice that you put something in a block when you extend a layout and it’s magically
inserted. Also notice that you don’t have to use a block just because it’s defined—you
never touch the header block because you don’t need to.

 If you wanted to, you could define another page that uses this layout very easily, as
shown in the next listing.

Listing 7.12 A simple layout file for Pug

Listing 7.13 Using a Pug layout file

Listing 7.14 The output of using a Pug layout

Defines a
header block

Defines a
body block
Licensed to <miler.888@gmail.com>

115Summary
extends layout.jade
block body
 p This is another page using the layout.
 img(src="cute_dog.jpg" alt="A cute dog!")
 p Isn’t that a cute dog!

Layouts let you separate out common components, which means you don’t have to
write the same code over and over again.

7.3.3 Mixins in Pug

Pug has another cool feature called mixins which are functions you define in your Pug
file to cut down on repetitive tasks.

 Let’s reimplement the user widget example from the EJS section. You’ll make a
widget that’s given an object called user and returns an HTML widget for that user.
The following listing shows how you might do that.

mixin user-widget(user)
 .user-widget
 img(src=user.profilePicture)
 .user-name= user.name
 .user-bio= user.bio

+user-widget(currentUser)

- each user in userList
 +user-widget(user)

This would render the user widget for the currentUser and for every other user in the
userList. No duplicated code for you!

 That’s all that we’ll look at with Pug. For more about Pug’s syntax, check out Pug’s
reference documentation at http://jade-lang.com/reference/.

7.4 Summary
■ Express has a view system that can dynamically render HTML pages. You call

res.render to dynamically render a view with some variables. Before doing this,
you must configure Express to use the right view engine in the right folder.

■ The EJS templating language is a light layer on top of HTML that adds the ability
to dynamically generate HTML with pieces of JavaScript.

■ The Pug templating language is a reimagining of HTML that lets you dynami-
cally render HTML with a whole new language. It attempts to remove verbosity
and typing.

Listing 7.15 Using a Pug layout file again

Listing 7.16 A user widget mixin

Renders the user
widget for the
current user

Renders the user widget
for a bunch of users
Licensed to <miler.888@gmail.com>

http://jade-lang.com/reference/

Licensed to <miler.888@gmail.com>

Part 3

Express in Context

You’ve arrived at the final act of our story: Express in Context.
 You spent part 1 of this book learning what Express is and its relationship to

Node.js. In part 2 you learned all of Express’s ins and outs—routing, views, mid-
dleware, and more.

 Now you’ll build on that foundational knowledge. Express is rarely the only
tool that you’ll use to build an Express application, and you’ll learn how to inte-
grate it with other tools. Your applications will become real.

 Chapter 8 will look at database integration. Most interesting web applications
have some kind of persistent data store; maybe they store users or photos or blog
posts (or all of those). You’ll learn how to integrate the popular MongoDB data-
base with an Express application.

 You want to make your Express applications as robust as possible. One of the
best ways is to test them thoroughly, and one of the best ways to test thoroughly
is by setting up automated tests. You’ll learn how to do all that in chapter 9.

 Chapter 10 takes a look at securing Express applications. There’s a lot more
to security than just choosing a strong password—the kinds of attacks that can
overtake your applications can be sophisticated and powerful. You’ll learn how
to protect yourself against common threats by using helpful Express libraries
(and being careful with some parts of core Express).

 In chapter 11, you’ll deploy your applications into the real world. Every URL
you’ve visited has started with localhost, but no longer! You’ll move your applica-
tions onto the Heroku cloud platform and they’ll run on the real internet.
Licensed to <miler.888@gmail.com>

118 PART 3 Express in Context
 Chapter 12 will cover Express applications at scale. How do you organize your
applications? How do you make sure your app works reliably? We’ll learn how a mature
Express application is put together.

 After those chapters you’ll be an Express expert.
Licensed to <miler.888@gmail.com>

Persisting your data
with MongoDB
I have three favorite chapters in this book.
 My very favorite is chapter 3, where we discuss the foundations of Express. I like

that chapter because the goal is to really explain Express. In my opinion, it’s the most
important chapter of the book, because it explains the framework conceptually.

 Chapter 10 is my second favorite. As you’ll see, it discusses security, and I love
putting a hacker hat on and trying to break Express applications. It’s a lot of fun
(and, incidentally, terribly important).

 This chapter is my final favorite. Why? Because after this chapter, your applica-
tions will feel real. No more dinky example apps. No more data that quickly disap-
pears. Your Express applications will have user accounts, blog posts, friend requests,
calendar appointments—all with the power of data persistence.

 Nearly every application has some kind of data, be it blog posts or user accounts
or cat pictures. As we’ve discussed, Express is generally an unopinionated framework.

This chapter covers
■ Using Mongoose, an official MongoDB library

for controlling the database with Node
■ Securely creating user accounts using bcrypt
■ Using Passport for user authentication.
119

Licensed to <miler.888@gmail.com>

120 CHAPTER 8 Persisting your data with MongoDB
Fitting in with this mantra, Express doesn’t dictate how you store your data. So how
should we approach it?

 You could store your application’s data in memory, by setting variables. Chapter 3’s
guestbook example stored the guestbook entries in an array, for example. Although
this is useful in very simple cases, it has a number of disadvantages. For one, if your
server stops (either because you manually stop it or because it crashes), your data is
gone. And if you grow to hundreds of millions of data points, you’ll run out of mem-
ory. This method also runs into issues when you have multiple servers running your
application, because data can be on one machine but not the other.

 You could try to store your application’s data in files, by writing to a file or multiple
files. This is how many databases work internally, after all. But that leaves you to figure
out how to structure and query that data. How do you save your data? How do you effi-
ciently get data out of those files when you need it? You might wind up building a
database of your own, which is a huge headache. And once again, this doesn’t magi-
cally work with multiple servers.

 We’ll need another plan. And that’s why we choose software designed for this pur-
pose: a database. Our database of choice is MongoDB.

8.1 Why MongoDB?
MongoDB (often shortened to Mongo) is a popular database that’s wiggled its way
into the hearts of many Node developers. Its pairing with Express is beloved enough
to have spawned the acronym MEAN, for Mongo, Express, Angular (a front-end
JavaScript framework), and Node. In this book, we’ll be discussing everything but the
A of that acronym—the MEN stack, if you will.

 At this point, you may be asking, “There are a lot of choices for databases out
there, like SQL or Apache Cassandra or Couchbase. Why choose Mongo?” That’s a
good question! In general, web applications store their data in one of two kinds of
databases: relational and non-relational.

 Typically, relational databases are a lot like spreadsheets. Their data is structured,
and each entry is generally a row in a table. They’re a bit like strongly typed languages
such as Java, where each entry must fit into rigid requirements (called a schema).
Most relational databases can be controlled with some derivative of SQL, the Struc-
tured Query Language; you likely have heard of MySQL or SQL Server or PostgreSQL.
The terms relational databases and SQL databases are often used interchangeably.

 Non-relational databases are often called NoSQL databases. (NoSQL means anything
that isn’t SQL, but it tends to refer to a certain class of database.) I like to imagine
NoSQL as a different technology and a fist-up cry against the status quo. Perhaps
NoSQL is tattooed on a protester’s arm. In any case, NoSQL databases are different
from relational databases in that they’re generally not structured like a spreadsheet.
They’re generally a bit less rigid than SQL databases. They’re very much like Java-
Script in this way; JavaScript is generally less rigid. In general, NoSQL databases feel a
bit more like JavaScript than SQL databases.
Licensed to <miler.888@gmail.com>

121Why MongoDB?
 For this reason, we’ll use a NoSQL database. The NoSQL database we’ll use is
Mongo. But why choose that one?

 For one, Mongo is popular. That isn’t in itself a merit, but it has a few benefits. You
won’t have trouble finding help online. It’s also useful to know; it’s used in lots of places
by lots of people. Mongo is also a mature project. It’s been around since 2007 and is
trusted by companies like eBay, Craigslist, and Orange. You won’t be using buggy,
unsupported software.

 Mongo is popular in part because it’s mature, feature filled, and reliable. It’s writ-
ten in performant C++ and is trusted by myriad users.

 Although Mongo isn’t written in JavaScript, its native shell uses JavaScript. That
means that when you open Mongo to play around in the command line, you send it
commands with JavaScript. It’s pretty nice to be able to talk to the database with a lan-
guage you’re already using.

 I also chose Mongo for this chapter because I think it’s easier to learn than SQL for
a JavaScript developer. SQL is a powerful programming language unto itself, but you
already know JavaScript!

 I hardly believe that Mongo is the right choice for all Express applications. Rela-
tional databases are incredibly important and can be used well with Express, and
other NoSQL databases like CouchDB are also powerful. But Mongo fits well with the
Express ecosystem and is relatively easy to learn (compared to SQL), which is why I
chose it for this chapter.

NOTE If you’re like me, you know SQL and want to use it for your Express
projects. This chapter will cover Mongo, but if you’re looking for a helpful
SQL tool, check out Sequelize at http://sequelizejs.com/. It interfaces with
many SQL databases and has a number of helpful features. In this chapter,
we’ll deal heavily with a module called Mongoose; for your reference as you
read, Mongoose is to Mongo as Sequelize is to SQL. Keep that in mind if you
want to use SQL!

8.1.1 How Mongo works

Before we start, let’s talk about how Mongo works. Most applications have one data-
base, like Mongo. These databases are hosted by servers. A Mongo server can have
many databases on it, but there is generally one database per application. If you’re
developing only one application on your computer, you’ll likely have only one Mongo
database. (These databases can be replicated across multiple servers, but you treat
them as if they’re one database.)

 To access these databases, you’ll run a Mongo server. Clients will talk to these serv-
ers, viewing and manipulating the database. There are client libraries for most pro-
gramming languages; these libraries are called drivers and let you talk to the database
in your favorite programming language. In this book, we’ll be using the Node driver
for Mongo.
Licensed to <miler.888@gmail.com>

http://sequelizejs.com/

122 CHAPTER 8 Persisting your data with MongoDB
 Every database will have one or more collections. I like to think of collections as
fancy arrays. A blog application might have a collection for blog posts, or a social net-
work might have a collection for user profiles. They’re like arrays in that they’re giant
lists, but you can also query them (“Give me all users in this collection older than age
18,” for example) much more easily than arrays.

 Every collection will have any number of documents. Documents aren’t technically
stored as JSON, but you can think of them that way; they’re basically objects with vari-
ous properties. Documents are things like users and blog posts; there’s one document
per thing. Documents don’t have to have the same properties, even if they’re in the
same collection—you could theoretically have a collection filled with completely dif-
ferent objects (although you seldom do this in practice).

 Documents look a lot like JSON, but they’re technically Binary JSON, or BSON. You
almost never deal with BSON directly; rather, you’ll translate to and from JavaScript
objects. The specifics of BSON encoding and decoding are a little different from JSON.
BSON also supports a few types that JSON does not, like dates, timestamps, and unde-
fined values. Figure 8.1 shows how things are put together.

One last important point: Mongo adds a unique _id property to every document.
Because these IDs are unique, two documents are the same if they have the same _id
property, and you can’t store two documents with the same ID in the same collection.
This is a miscellaneous point but an important one that we’ll come back to!

8.1.2 For you SQL users out there

If you come from a relational/SQL background, many of Mongo’s structures map one-
to-one with structures from the SQL world. (If you’re not familiar with SQL, you can
skip this section.)

 Documents in Mongo correspond with rows or records in SQL. In an application
with users, each user would correspond to one document in Mongo or one row in
SQL. In contrast to SQL, Mongo doesn’t enforce any schema at the database layer, so
it’s not invalid in Mongo to have a user without a last name or an email address that’s
a number.

Document Document Document

Collection

Database

Application

Document Document Document

Collection

Document Document Document

Collection

Figure 8.1 Hierarchy of Mongo’s databases, collections, and documents
Licensed to <miler.888@gmail.com>

123Why MongoDB?
 Collections in Mongo correspond to SQL’s tables. Mongo’s collections contain
many documents, whereas SQL’s tables contain many rows. Once again, Mongo’s col-
lections don’t enforce a schema, unlike SQL. In addition, these documents can embed
other documents, unlike in SQL—blog posts could contain the comments, which
would likely be two tables in SQL. In a blog application, there would be one Mongo
collection for blog posts or one SQL table. Each Mongo collection contains many doc-
uments, where each SQL table contains many rows or records.

 Databases in Mongo are very similar to databases in SQL. Generally, there’s one
database per application. Mongo databases can contain many collections, whereas
SQL databases can contain many tables. A social networking site would likely have just
one of these databases in SQL, Mongo, or another type of database.

 For a full list of translations from SQL terminology to Mongo terminology (queries,
too), check out the official SQL to MongoDB Mapping Chart at http://docs.mongodb
.org/manual/reference/sql-comparison/index.html.

8.1.3 Setting up Mongo

You’ll want to install Mongo locally so that you can use it while you’re developing. If
you’re on OSX and aren’t sure you want to use the command line, I’m a big fan of
Mongo.app. Instead of wrangling the command line, you simply launch an applica-
tion that runs in the menu bar at the top right of your screen. You can tell when it’s
running and when it’s not, easily start up a console, and shut it down effortlessly. You
can download it at http://mongoapp.com/.

 If you’re on OSX and would prefer to use the command line, you can use the
Homebrew package manager to install Mongo with a simple brew install mongodb. If
you’re using MacPorts, sudo port install mongodb will do the job. If you’re not using
a package manager and you don’t want to use Mongo.app, you can download it from
the Mongo downloads page at www.mongodb.org/downloads.

 If you’re on Ubuntu Linux, Mongo’s website has helpful instructions at http://
docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/. If you’re using a
Debian distribution like Mint (or Debian), check out the official documentation at
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian/. Other Linux
users can check out http://docs.mongodb.org/manual/tutorial/install-mongodb-on-
linux/ for various installations.

 If you’re a Windows user or on any of the OSes I didn’t mention, the Mongo down-
loads page will help you. You can either download it from their website or scroll down
to the bottom of that page to see other package managers that have Mongo. Take a
look at www.mongodb.org/downloads. If you can, make sure you download the 64-bit
version; the 32-bit version has a limit on storage space.

 Throughout this book, we’ll assume that your Mongo database is at localhost:27017/
test. Port 27017 is the default port and the default database is one called test, but your
results may vary. If you can’t connect to your database, check your specific installation
for help.
Licensed to <miler.888@gmail.com>

http://docs.mongodb.org/manual/reference/sql-comparison/index.html
http://docs.mongodb.org/manual/reference/sql-comparison/index.html
http://mongoapp.com/
http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-linux/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-linux/
http://www.mongodb.org/downloads

124 CHAPTER 8 Persisting your data with MongoDB
8.2 Talking to Mongo from Node with Mongoose
You’ll need a library that will let you talk to Mongo from Node, and therefore from
Express. There are a number of lower-level modules, but you’d like something easy to
use and feature filled. What should you use?

 Look no further than Mongoose (http://mongoosejs.com/), an officially sup-
ported library for talking to Mongo from Node. To quote its documentation:

Mongoose provides a straight-forward, schema-based solution to modeling
your application data and includes built-in type casting, validation, query
building, business logic hooks and more, out of the box.

In other words, Mongoose gives you much more than merely talking to the database.
You’ll learn how it works by creating a simple website with user accounts.

8.2.1 Setting up your project

To learn the topics in this chapter, you’ll develop a very simple social network appli-
cation. This app will let users register new profiles, edit those profiles, and browse
each other’s profiles. You’ll call it Learn About Me, for lack of a creative name, or
LAM for short.

 Your site will have a few pages on it:

■ The homepage, which will list all users. Clicking a user in the list will take you to
their profile page.

■ The profile page will show the user’s display name (or username if no display
name is defined), the date they joined the site, and their biography. A user can
edit their own profile, but only when they’re logged in.

■ The page to sign up for a new account and a page to log into an account.
■ After signing up, users will be able to edit their display names and biographies,

but only when they’re logged in.

As always, create a new directory for this project. You’ll need to create a package file
with metadata about our project and its dependencies. Create a package.json file and
put the code from the following listing inside.

{
 "name": "learn-about-me",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "bcrypt-nodejs": "0.0.3",
 "body-parser": "^1.6.5",
 "connect-flash": "^0.1.1",
 "cookie-parser": "^1.3.2",

Listing 8.1 package.json for LAM
Licensed to <miler.888@gmail.com>

http://mongoosejs.com/

125Talking to Mongo from Node with Mongoose
 "ejs": "^1.0.0",
 "express": "^5.0.0",
 "express-session": "^1.7.6",
 "mongoose": "^3.8.15",
 "passport": "^0.2.0",
 "passport-local": "^1.0.0"
 }
}

After you’ve created this file, run npm install to install our slew of dependencies.
You’ll see what each dependency does as you chug through the rest of the chapter, so
if any of them are unclear, don’t worry. As usual, we’ve set this up so that npm start
will start our app (which you’ll save into app.js).

THE BCRYPT-NODE MODULE This example (listing 8.1) uses a module called
bcrypt-node. This module is written in pure JavaScript just like most other
modules so it’s easy to install. There’s another module on the npm registry
called bcrypt, which requires some C code to be compiled. Compiled C code
will be faster than pure JavaScript, but it can cause issues if your computer
isn’t set up correctly for compiling C code. We use bcrypt-node in this exam-
ple to avoid those issues here.

When it’s time to get more speed, you should switch to the bcrypt module.
Luckily, the faster module is almost identical once it’s installed, so it should
be quick to swap it out.

Now it’s time to start putting things into databases.

8.2.2 Creating a user model

As we’ve discussed, Mongo stores everything in BSON, which is a binary format. A sim-
ple Hello World BSON document might look like this internally:

\x16\x00\x00\x00\x02hello\x00\x06\x00\x00\x00world\x00\x00

A computer can deal with all that mumbo-jumbo, but that’s hard to read for humans
like us. We want something we can easily understand, which is why developers have
created the concept of a database model. A model is a representation of a database
record as a nice object in your programming language of choice. In this case, our
models will be JavaScript objects.

 Models can serve as simple objects that store database values, but they often have
things like data validation, extra methods, and more. As you’ll see, Mongoose has a lot
of those features.

 In this example, you’ll be building a model for users. These are the properties user
objects should have:

■ Username—A unique name. This will be required.
■ Password—This will also be required.
■ Time joined—A record of when the user joined the site.
Licensed to <miler.888@gmail.com>

126 CHAPTER 8 Persisting your data with MongoDB
■ Display name—A name that’s displayed instead of the username. This will be
optional.

■ Biography—An optional bunch of text that’s displayed on the user’s profile page.

To specify this in Mongoose, you must define a schema, which contains information
about properties, methods, and more. (Personally, I don’t think schema is the right
word; it’s a lot more like a class or a prototype.) It’s pretty easy to translate these Eng-
lish terms into Mongoose code.

 Create a folder called models in the root of your project, and create a new file
called user.js inside that folder. To start, put the contents from the following listing in
that file.

var mongoose = require("mongoose");
var userSchema = mongoose.Schema({
 username: { type: String, required: true, unique: true },
 password: { type: String, required: true },
 createdAt: { type: Date, default: Date.now },
 displayName: String,
 bio: String
});

After you require Mongoose, it’s pretty straightforward to define your fields. As you
can see, you define the username as username, the password as password, the time
joined as createdAt, the display name as displayName, and the biography as bio.
Notice that some fields are required, some are unique, some have default values, and
others are simply a declaration of their types.

 Once you’ve created the schema with the properties, you can add methods. The
first you’ll add is simple: get the user’s name. If the user has defined a display name,
return that; otherwise, return their username. The next listing shows how to add that.

…

userSchema.methods.name = function() {
 return this.displayName || this.username;
};

You’ll also want to make sure you store the password securely. You could store the pass-
word in plain text in your database, but that has a number of security issues. What if
someone hacked your database? They’d get all the passwords! You also want to be
responsible administrators and not be able to see your users’ passwords in the clear. In
order to ensure that you never store the real password, you’ll apply a one-way hash to
it using the bcrypt algorithm.

 To start using bcrypt, add the require statement to the top of your file. Bcrypt
works by running a part of the algorithm many times to give you a secure hash, but

Listing 8.2 Defining the user schema (in models/user.js)

Listing 8.3 Adding a simple method to the user model (in models/user.js)
Licensed to <miler.888@gmail.com>

127Talking to Mongo from Node with Mongoose

t

that number of times is configurable. The higher the number, the more secure the
hash but the longer it will take. You’ll use a value of 10 for now, as shown in the next
listing, but you could increase that number for higher security (but, once again,
slower speed).

var bcrypt = require("bcrypt-nodejs");
var SALT_FACTOR = 10;

After you’ve defined your schema, you’ll define a pre-save action. Before you save your
model to the database, you’ll run code that will hash the password. The next listing
show how that looks.

…

var noop = function() {};

userSchema.pre("save", function(done) {
 var user = this;
 if (!user.isModified("password")) {
 return done();
 }
 bcrypt.genSalt(SALT_FACTOR, function(err, salt) {
 if (err) { return done(err); }
 bcrypt.hash(user.password, salt, noop,
 ➥ function(err, hashedPassword) {
 if (err) { return done(err); }
 user.password = hashedPassword;
 done();
 });
 });
});

Now, you never have to call any fancy logic to hash the password for the database—it’ll
happen every time you save the model into Mongo.

 You’ll need to write code to compare the real password to a password guess. When
a user logs in, you’ll need to make sure the password they typed is correct. The follow-
ing listing defines another method on the model to do this.

…

userSchema.methods.checkPassword = function(guess, done) {
 bcrypt.compare(guess, this.password, function(err, isMatch) {
 done(err, isMatch);
 });
};

Listing 8.4 Requiring bcrypt (in models/user.js)

Listing 8.5 Pre-save action to hash the password (in models/user.js)

Listing 8.6 Checking the user’s password (in models/user.js)

A do-nothing
function for use with
the bcrypt module

Defines a function
that runs before
model is saved

Saves a reference
to the user

Skips this logic if
password isn’t modified

Generates a salt for the
hash, and calls the inner
function once completed

Hashes
he user’s
password

Stores the password and
continues with the saving
Licensed to <miler.888@gmail.com>

128 CHAPTER 8 Persisting your data with MongoDB
Now you’ll be storing your users’ passwords securely.
 Note that we use bcrypt.compare instead of a simple equality check (with some-

thing like ===). This is for security reasons—it helps keep us safe from a complicated
hacker trick called a timing attack.

 Once you’ve defined your schema with its properties and methods, you’ll need
to attach that schema to an actual model. It takes only one line to do this, and
because you’re defining this user model in a file, you’ll make sure to export it into
module.exports so other files can require it. Here’s how to do that.

…

var User = mongoose.model("User", userSchema);
module.exports = User;

That’s how you define a user model. The next listing shows what the full file will look
like when you’re finished.

var bcrypt = require("bcrypt-nodejs");
var mongoose = require("mongoose");

var SALT_FACTOR = 10;

var userSchema = mongoose.Schema({
 username: { type: String, required: true, unique: true },
 password: { type: String, required: true },
 createdAt: { type: Date, default: Date.now },
 displayName: String,
 bio: String,
});

var noop = function() {};

userSchema.pre("save", function(done) {

 var user = this;

 if (!user.isModified("password")) {
 return done();
 }

 bcrypt.genSalt(SALT_FACTOR, function(err, salt) {
 if (err) { return done(err); }
 bcrypt.hash(user.password, salt, noop, function(err, hashedPassword) {
 if (err) { return done(err); }
 user.password = hashedPassword;
 done();
 });
 });

});

Listing 8.7 Creating and exporting the user model (in models/user.js)

Listing 8.8 Finished models/user.js
Licensed to <miler.888@gmail.com>

129Talking to Mongo from Node with Mongoose
userSchema.methods.checkPassword = function(guess, done) {
 bcrypt.compare(guess, this.password, function(err, isMatch) {
 done(err, isMatch);
 });
};

userSchema.methods.name = function() {
 return this.displayName || this.username;
};

var User = mongoose.model("User", userSchema);

module.exports = User;

8.2.3 Using your model

Now that you’ve defined your model, you’ll want to ... well, use it! You’ll want to do
things like list users, edit profiles, and register new accounts. Although defining the
model and its schema can be a little hairy, using it could hardly be easier; let’s see how.

 In order to start using it, first create a simple app.js in the root of your project that
will set up your app. This is incomplete and you’ll come back and fill in some more
later, but for now, the following listing show what you’ll do.

var express = require("express");
var mongoose = require("mongoose");
var path = require("path");
var bodyParser = require("body-parser");
var cookieParser = require("cookie-parser");
var session = require("express-session");
var flash = require("connect-flash");

var routes = require("./routes");

var app = express();

mongoose.connect("mongodb://localhost:27017/test");

app.set("port", process.env.PORT || 3000);

app.set("views", path.join(__dirname, "views"));
app.set("view engine", "ejs");

app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(session({
 secret: "TKRv0IJs=HYqrvagQ#&!F!%V]Ww/4KiVs$s,<<MX",
 resave: true,
 saveUninitialized: true
}));
app.use(flash());

app.use(routes);

app.listen(app.get("port"), function() {
 console.log("Server started on port " + app.get("port"));
});

Listing 8.9 app.js, to start

Requires everything
you need, including
Mongoose

Puts all of your routes
in another file

Connects to your
MongoDB server in
the test database

Uses four
middlewares
Licensed to <miler.888@gmail.com>

130 CHAPTER 8 Persisting your data with MongoDB
In listing 8.9, you specified that you’re going to be using an external routes file. You
need to define that too. Create routes.js in the root of your project, as shown in the
next listing.

var express = require("express");

var User = require("./models/user");

var router = express.Router();

router.use(function(req, res, next) {
 res.locals.currentUser = req.user;
 res.locals.errors = req.flash("error");
 res.locals.infos = req.flash("info");
 next();
});

router.get("/", function(req, res, next) {
 User.find()
 .sort({ createdAt: "descending" })
 .exec(function(err, users) {
 if (err) { return next(err); }
 res.render("index", { users: users });
 });
});

module.exports = router;

These two files have a couple of things you haven’t seen before. First, you’re connect-
ing to your Mongo database with Mongoose, using mongoose.connect. You simply
pass an address and Mongoose does the rest. Depending on how you’ve installed
Mongo, this URL might be different; for example, the server could be at local-
host:12345/learn_about_me_db. Without this line, you won’t be able to interact with
the database.

 Second, you’re grabbing a list of users with User.find. Then you sort these results
by the createdAt property, and then you run the query with exec. You don’t actually
run the query until exec is called. As you’ll see, you can also specify a callback in find
to skip having to use exec, but then you can’t do things like sorting.

 Let’s create the homepage view. Create the views directory, where you’ll put three
files inside. The first will be _header.ejs, which is the HTML that will appear at the
beginning of every page, as shown in the next listing.

<!DOCTYPE html>
<html>

<head>

<meta charset="utf-8">
<title>Learn About Me</title>

Listing 8.10 routes.js, to start

Listing 8.11 views/_header.ejs

Sets useful variables
for your templates

Queries the users
collection, returning
the newest users first
Licensed to <miler.888@gmail.com>

131Talking to Mongo from Node with Mongoose
<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap

➥ /3.3.6/css/bootstrap.min.css">

</head>

<body>

<div class="navbar navbar-default navbar-static-top" role="navigation">

 <div class="container">

 <div class="navbar-header">
 Learn About Me
 </div>

 <ul class="nav navbar-nav navbar-right">
 <% if (currentUser) { %>

 Hello, <%= currentUser.name() %>

 Log out
 <% } else { %>
 Log in
 Sign up
 <% } %>

 </div>

</div>

<div class="container">

 <% errors.forEach(function(error) { %>
 <div class="alert alert-danger" role="alert">
 <%= error %>
 </div>
 <% }) %>

 <% infos.forEach(function(info) { %>
 <div class="alert alert-info" role="alert">
 <%= info %>
 </div>
 <% }) %>

You may notice that this file starts with an underscore. It’s not header.ejs; it’s
_header.ejs. This is a common convention: views that aren’t rendered directly start
with underscores. You’d never render the header directly—another view would
include the header.

 Next, you’ll create the footer in _footer.ejs, as shown here.

</div>
</body>
</html>

Listing 8.12 views/_footer.ejs

Changes the
navbar if the user
is logged in. You
don’t have this
code yet, so the
user will always
appear to be
logged out.
Licensed to <miler.888@gmail.com>

132 CHAPTER 8 Persisting your data with MongoDB
Finally, create index.ejs, which is the actual homepage, as shown in the next listing.
This will pull from the users variable that you’re passed when you render this view.

<% include _header %>

<h1>Welcome to Learn About Me!</h1>

<% users.forEach(function(user) { %>

 <div class="panel panel-default">
 <div class="panel-heading">
 <a href="/users/<%= user.username %>">
 <%= user.name() %>

 </div>
 <% if (user.bio) { %>
 <div class="panel-body"><%= user.bio %></div>
 <% } %>
 </div>

<% }) %>

<% include _footer %>

If you save everything, start your Mongo server, issue npm start, and visit local-
host:3000 in your browser, you won’t see much, but you’ll see a homepage that looks
something like the one in figure 8.2.

Listing 8.13 views/index.ejs

Figure 8.2 The empty
LAM homepage
Licensed to <miler.888@gmail.com>

133Talking to Mongo from Node with Mongoose

find
retu

on
You

ma
use
If you’re not getting any errors, that’s great! That means you’re querying your Mongo
database and getting all of the users in there—there just happen to be no users at the
moment.

 Now add two more routes to your page: one for the sign-up page and one to do the
actual signing up. In order to use that, you’ll need to make sure you use the body-parser
middleware to parse form data. First, we’ll add body-parser to app.js, as seen next.

var bodyParser = require("body-parser");

…

app.use(bodyParser.urlencoded({ extended: false }));

…

Setting body-parser’s extended option to false makes the parsing simpler and more
secure. The next listing shows how to add sign-up routes in routes.js.

var passport = require("passport");

…

router.get("/signup", function(req, res) {
 res.render("signup");
});

router.post("/signup", function(req, res, next) {
 var username = req.body.username;
 var password = req.body.password;

 User.findOne({ username: username }, function(err, user) {

 if (err) { return next(err); }
 if (user) {
 req.flash("error", "User already exists");
 return res.redirect("/signup");
 }

 var newUser = new User({
 username: username,
 password: password
 });
 newUser.save(next);

 });
}, passport.authenticate("login", {
 successRedirect: "/",
 failureRedirect: "/signup",
 failureFlash: true
}));

Listing 8.14 Adding body-parser middleware (to app.js)

Listing 8.15 Adding sign-up routes (in routes.js)

Requires and uses
the body-parser
middleware in
your app

body-parser adds the
username and password
to req.body.

Calls
One to
rn just
e user.

 want a
tch on

rnames
here.

If you find a user, you should
bail out because that
username already exists.

Creates a new instance of
the User model with the
username and password

Saves the new user to the
database and continues to
the next request handler

Authenticates
the user
Licensed to <miler.888@gmail.com>

134 CHAPTER 8 Persisting your data with MongoDB
The previous code effectively saves new users to your database. Next add a UI to this by
creating views/signup.ejs, as shown in the following listing.

<% include _header %>

<h1>Sign up</h1>

<form action="/signup" method="post">
 <input name="username" type="text" class="form-control"

placeholder="Username" required autofocus>
 <input name="password" type="password" class="form-control"

placeholder="Password" required>
 <input type="submit" value="Sign up" class="btn btn-primary btn-block">
</form>

<% include _footer %>

Now, when you submit this form, it’ll talk to the server code and sign up a new user.
Start up the server with npm start and go to the sign-up page (at localhost:3000/
signup). Create a few accounts and you’ll see them appear on the homepage. You can
see our sign-up page in figure 8.3 and the homepage after a few users have been cre-
ated in figure 8.4.

 The last bit of business before you have to code logging in and logging out is the
viewing of profiles. You’ll add just one more route for that, and that’ll look like the code
in the next listing.

Listing 8.16 views/signup.ejs

Figure 8.3 The
Learn About Me
(LAM) sign-up page
Licensed to <miler.888@gmail.com>

135Talking to Mongo from Node with Mongoose
…

router.get("/users/:username", function(req, res, next) {
 User.findOne({ username: req.params.username }, function(err, user) {
 if (err) { return next(err); }
 if (!user) { return next(404); }
 res.render("profile", { user: user });
 });
});
…

Once again, you’ll be using findOne, but in this case you’ll actually pass the user you find
into the view. Speaking of which, profile.ejs will look something like this next listing.

<% include _header %>

<% if ((currentUser) && (currentUser.id === user.id)) { %>
 Edit your profile
<% } %>

<h1><%= user.name() %></h1>
<h2>Joined on <%= user.createdAt %></h2>

<% if (user.bio) { %>
 <p><%= user.bio %></p>
<% } %>

<% include _footer %>

Listing 8.17 The profiles route (in routes.js)

Listing 8.18 views/profile.ejs

Figure 8.4 An early
LAM homepage, after
creating a few users

References
currentUser, a
variable that will
appear once you
add login and
logout. For now,
this will always
evaluate to false.
Licensed to <miler.888@gmail.com>

136 CHAPTER 8 Persisting your data with MongoDB
Now you can create and view user profiles, as shown in figure 8.5. Next, you’ll need
to add login and logout so that users can edit their existing profiles. Let’s see how
that works.

8.3 Authenticating users with Passport
In this chapter, you’ve been creating Learn About Me, a website that lets users create
and browse profiles. You’ve implemented the homepage, the view profile page, and
the sign-up page.

 But right now, your app knows nothing special about your User models. They have
no authentication, so they might as well be Cake models or Burrito models—you can
view and create them just as you could another object. You’ll want to implement user
authentication. To do this you’ll need a login page, the notion of a currently logged-in
user (which you’ve seen as currentUser in a few places), and the actual verification
of passwords.

 For this, you’ll choose Passport. To quote its documentation, “Passport is authenti-
cation middleware for Node. It is designed to serve a singular purpose: authenticate
requests.” You’ll be dropping this middleware into your application and writing a little
code to wire up your users, and you’ll be in business. Passport takes away a lot of the
headache.

 Remember that Passport doesn’t dictate how you authenticate your users; it’s there
only to provide helpful boilerplate code. It’s like Express in that way. In this chapter,
we’ll look at how to use Passport to authenticate users stored in a Mongo database, but
Passport also supports authentication with providers like Facebook, Google, Twitter,
and over 100 more. It’s extremely modular and powerful!

Figure 8.5 The LAM
profile page
Licensed to <miler.888@gmail.com>

137Authenticating users with Passport
8.3.1 Setting up Passport

When setting up Passport, you’ll need to do three things:

1 Set up the Passport middleware. This is pretty easy.
2 Tell Passport how to serialize and deserialize users. This is a short amount of code

that effectively translates a user’s session into an actual user object.
3 Tell Passport how to authenticate users. In this case, this is the bulk of your code,

which will instruct Passport how to talk to your Mongo database.

Let’s get started.

SETTING UP THE PASSPORT MIDDLEWARE

To initialize Passport, you’ll need to set up three official Express middlewares, a third-
party middleware, and then two Passport middlewares. For your reference, they’re
listed here:

■ body-parser—parses HTML forms
■ cookie-parser—handles the parsing of cookies from browsers and is required

for user sessions
■ express-session—Stores user sessions across different browsers
■ connect-flash—Shows error messages
■ passport.initialize—Initializes the Passport module (as you’ll learn)
■ passport.session—Handles Passport sessions (as you’ll learn)

You’ve already included some of these middlewares: body-parser, cookie-parser, express-
session, and connect-flash.

 After those, make sure you require Passport, and then you’ll use two middleware
functions it provides. Put these at the top of your application (and make sure you
require them, too), as shown in the following listing.

var bodyParser = require("body-parser");
var cookieParser = require("cookie-parser");
var flash = require("connect-flash");
var passport = require("passport");
var session = require("express-session");

…

app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(session({
 secret: "TKRv0IJs=HYqrvagQ#&!F!%V]Ww/4KiVs$s,<<MX",
 resave: true,
 saveUninitialized: true
}));
app.use(flash());

app.use(passport.initialize());
app.use(passport.session());

…

Listing 8.19 Setting up the middleware for Passport (in app.js)

Needs to be a
bunch of random
characters (not
necessarily what
are shown here)
Licensed to <miler.888@gmail.com>

138 CHAPTER 8 Persisting your data with MongoDB
There are three options we pass to express-session:

■ secret allows each session to be encrypted from the clients. This deters hackers
from hacking into users’ cookies. As noted, it needs to be a bunch of random
characters.

■ resave is option required by the middleware. When it’s set to true, the session will
be updated even when it hasn’t been modified.

■ saveUninitialized is another required option. This resets sessions that are
uninitialized.

Once you’ve set that up, you’ll be ready to move on to the next step: telling Passport
how to extract users from the session.

SERIALIZING AND DESERIALIZING USERS

Passport needs to know how to serialize and deserialize users. In other words, you’ll
need to translate a user’s session into an actual user object and vice-versa. Passport’s
documentation does a better job describing it than I could:

In a typical web application, the credentials used to authenticate a user
will only be transmitted during the login request. If authentication
succeeds, a session will be established and maintained via a cookie set in
the user’s browser.

Each subsequent request will not contain credentials, but rather the
unique cookie that identifies the session. In order to support login
sessions, Passport will serialize and deserialize user instances to and from
the session.

To keep your code separated, you’ll be defining a new file called setuppassport.js. This
file will export a single function that will, not surprisingly, set up this Passport stuff.
Create setuppassport.js and require it from app.js, as shown in the listing that follows.

…

var setUpPassport = require("./setuppassport");

…

var app = express();
mongoose.connect("mongodb://localhost:27017/test");
setUpPassport();

…

Now, you can fill in your Passport setup.
 Because all of your user models have a unique _id property, you’ll use that as your

translation. First, make sure you require your user model. Next, instruct Passport how

Listing 8.20 Requiring and using Passport setup (in app.js)
Licensed to <miler.888@gmail.com>

139Authenticating users with Passport
to serialize and deserialize users from their ID, as in the next listing. This code can be
placed before or after the Passport middleware; place it where you’d like.

var passport = require("passport");

var User = require("./models/user");

module.exports = function() {

 passport.serializeUser(function(user, done) {
 done(null, user._id);
 });

 passport.deserializeUser(function(id, done) {
 User.findById(id, function(err, user) {
 done(err, user);
 });
 });
};

Now, once the session is dealt with, it’s time to do the hard part: the actual authentication.

THE REAL AUTHENTICATION

The final part of Passport is setting up a strategy. Some strategies include authentica-
tion with sites like Facebook or Google; the strategy you’ll use is a local strategy. In
short, that means the authentication is up to you, which means you’ll have to write a
little Mongoose code.

 First, require the Passport local strategy into a variable called LocalStrategy, as in
the following listing.

…
var LocalStrategy = require("passport-local").Strategy;
…

Next, tell Passport how to use that local strategy. Your authentication code will run
through the following steps:

1 Look for a user with the supplied username.
2 If no user exists, then your user isn’t authenticated; say that you’ve finished with

the message “No user has that username!”
3 If the user does exist, compare their real password with the password you sup-

ply. If the password matches, return the current user. If it doesn’t, return
“Invalid password.”

Now, let’s take that English and translate it into Passport code, as shown here.

Listing 8.21 Serializing and deserializing users (in setuppassport.js)

Listing 8.22 Requiring the Passport LocalStrategy (in setuppassport.js)

serializeUser should turn
a user object into an ID.
You call done with no
error and the user’s ID.

deserializeUser should turn
the ID into a user object.
Once you’ve finished, you
call done with any errors
and the user object.
Licensed to <miler.888@gmail.com>

140 CHAPTER 8 Persisting your data with MongoDB

Mo

you’
be

he
rns
ge.

ier
…

passport.use("login", new LocalStrategy(

➥ function(username, password, done) {
 User.findOne({ username: username }, function(err, user) {
 if (err) { return done(err); }
 if (!user) {
 return done(null, false,
 ➥ { message: "No user has that username!" });
 }
 user.checkPassword(password, function(err, isMatch) {
 if (err) { return done(err); }
 if (isMatch) {
 return done(null, user);
 } else {
 return done(null, false,
 ➥ { message: "Invalid password." });
 }
 });
 });
}));

…

As you can see, you instantiate a LocalStrategy. Once you’ve done that, you call the
done callback whenever you’re done! You’ll return the user object if it’s found and
false otherwise.

THE ROUTES AND THE VIEWS

Finally, you need to set up the rest of the views. You still need these:

1 Logging in
2 Logging out
3 Profile editing (when you’re logged in)

Let’s start with logging in. The GET route will be really straightforward; just render the
view, as follows.

…

router.get("/login", function(req, res) {
 res.render("login");
});

…

And this is what the view, at login.ejs, will look like. It’ll just be a simple form accept-
ing a username and password and then sending a POST request to /login, as shown in
the next listing.

Listing 8.23 Your Passport local strategy (in setuppassport.js)

Listing 8.24 GET /login (in routes.js)

Tells Passport to use
a local strategy

Uses a
ngoDB
query

ve seen
fore to

get one
user

If there is no user with t
supplied username, retu
false with an error messa
Calls the checkPassword
method you defined earl
in your User model.

If a match, returns
the current user
with no error

If not a match,
returns false with
an error message
Licensed to <miler.888@gmail.com>

141Authenticating users with Passport
<% include _header %>

<h1>Log in</h1>

<form action="/login" method="post">
 <input name="username" type="text" class="form-control"
 ➥ placeholder="Username" required autofocus>
 <input name="password" type="password" class="form-control"
 ➥ placeholder="Password" required>
 <input type="submit" value="Log in" class="btn btn-primary btn-block">
</form>

<% include _footer %>

Next, you’ll define the handler for a POST to /login. This will deal with Passport’s
authentication. Make sure to require it at the top of your file, as shown here.

var passport = require("passport");

…

router.post("/login", passport.authenticate("login", {
 successRedirect: "/",
 failureRedirect: "/login",
 failureFlash: true
}));

…

passport.authenticate returns a request handler function that you pass instead one
you write yourself. This lets you redirect to the right spot, depending on whether the
user successfully logged in.

 Logging out is also trivial with Passport. All you have to do is call req.logout, a
new function added by Passport, as shown in the next listing.

…

router.get("/logout", function(req, res) {
 req.logout();
 res.redirect("/");
});

…

Passport will populate req.user and connect-flash will populate some flash values.
You added this code a while ago, but take a look at it now, because you’ll likely under-
stand it better; see the following listing.

Listing 8.25 views/login.ejs

Listing 8.26 Do the login (in routes.js)

Listing 8.27 Logging out (in routes.js)

Sets an error message
with connect-flash if
the user fails to log in
Licensed to <miler.888@gmail.com>

142 CHAPTER 8 Persisting your data with MongoDB
…

router.use(function(req, res, next) {
 res.locals.currentUser = req.user;
 res.locals.errors = req.flash("error");
 res.locals.infos = req.flash("info");
 next();
});

…

Now you can log in and out. All you have left to do is the edit page.
 Next, let’s make some utility middleware that ensures users are authenticated. You

won’t use this middleware yet; you’ll just define it so that other routes down the line
can use it. You’ll call it ensureAuthenticated, and you’ll redirect to the login page if
the user isn’t authenticated, as shown in the next listing.

…

function ensureAuthenticated(req, res, next) {
 if (req.isAuthenticated()) {
 next();
 } else {
 req.flash("info", "You must be logged in to see this page.");
 res.redirect("/login");
 }
}

…

Now you’ll use this middleware to create the Edit profile page.
 When you GET the edit page, you’ll just render the view, but you want to make

sure the user is authenticated before you do that. All you have to do is pass ensure-
Authenticated to your route, and then it’s business as usual. Here’s how you’d
do that.

…

router.get("/edit", ensureAuthenticated, function(req, res) {
 res.render("edit");
});

…

As you can see, everything is as you’ve seen before, except you place your middleware
right before your request handler.

Listing 8.28 Passing data to views (in routes.js)

Listing 8.29 Middleware for determining if the user is authenticated (in routes.js)

Listing 8.30 GET /edit (in router.js)

Every view will now have
access to currentUser, which
pulls from req.user, which is
populated by Passport.

A function provided
by Passport

Ensure that the user is authenticated;
then run your request handler if they

haven’t been redirected.
Licensed to <miler.888@gmail.com>

143Authenticating users with Passport
 Let’s define the edit view now. This will be in edit.ejs, and it will be a simple form
that allows users to change their display name and biography; see the next listing.

<% include _header %>

<h1>Edit your profile</h1>

<form action="/edit" method="post">
 <input name="displayname" type="text" class="form-control"
 ➥ placeholder="Display name"
 ➥ value="<%= currentUser.displayName || "" %>">
 <textarea name="bio" class="form-control"
 ➥ placeholder="Tell us about yourself!">
 ➥ <%= currentUser.bio || "" %></textarea>
 <input type="submit" value="Update" class="btn
 ➥ btn-primary btn-block">
</form>

<% include _footer %>

Now, handle that form with a POST handler. This will also ensure authentication with
ensureAuthenticated, and it will otherwise update your model and save it to your
Mongo database, as shown in the following listing.

…

router.post("/edit", ensureAuthenticated, function(req, res, next) {
 req.user.displayName = req.body.displayname;
 req.user.bio = req.body.bio;
 req.user.save(function(err) {
 if (err) {
 next(err);
 return;
 }
 req.flash("info", "Profile updated!");
 res.redirect("/edit");
 });
});

…

There’s nothing fancy here; all you do is update the user in your Mongo database.
Remember that Passport populates req.user for you.

 Suddenly, you have your profile editor, as shown in figure 8.6.
 Now that you can edit profiles, go ahead and create some fake users and edit their

profiles. Check out Learn About Me, your mostly finished app, in figure 8.7.
 And now you have a real app!

Listing 8.31 views/edit.ejs

Listing 8.32 POST /edit (in routes.js)

Normally, this would
be a PUT request, but

browsers support only
GET and POST in

HTML forms.
Licensed to <miler.888@gmail.com>

144 CHAPTER 8 Persisting your data with MongoDB
Figure 8.6
Profile editor

Figure 8.7 The
LAM homepage
Licensed to <miler.888@gmail.com>

145Summary
8.4 Summary
■ Mongo is a database that lets you store arbitrary documents.
■ Mongoose is an official Mongo library for Node. It works well with Express.
■ To securely create user accounts, you need to make sure you never store pass-

words directly. You’ll use the bcrypt module to help us do this.
■ You’ll use Passport to authenticate users, making sure they’re logged in before

they can perform certain operations.
Licensed to <miler.888@gmail.com>

Testing Express
applications
Writing reliable code can be difficult. Even small software can be too complex for
one person, which can create bugs. Developers have come up with a number of
tricks to try to squash these errors. Compilers and syntax checkers automatically
scan your code for potential bugs; peer code reviews let other people look at what’s
written to see if they can spot errors; style guides can keep teams of developers on
the same page. These are all helpful tricks you play that keep your code more reli-
able and bug-free.

 Another powerful way to tackle bugs is with automated testing. Automated test-
ing lets you codify (literally!) how you want your software to behave and lets you
say, “My code works!” with much more confidence. It lets you refactor code without

This chapter covers
■ How testing helps you to be more confident

about your code’s behavior
■ Common testing practices
■ Running tests in Node.js with Mocha and Chai
■ Using Mocha and SuperTest and Cheerio
146

Licensed to <miler.888@gmail.com>

147What is testing and why is it important?
worrying if you broke something, and it gives you easy feedback about where your
code fails.

 You want these benefits for your Express applications. By the end of this chapter,
you’ll

■ Understand the motivation for testing at a high level
■ Understand the types of testing
■ Be able to do test-driven development (TDD), understanding and using the red-

green-refactor model of development
■ Write, run, and organize tests for general Node.js code to make sure your func-

tions and models work as intended (using tools called Mocha and Chai)
■ Test your Express applications to make sure your servers are behaving as they

should (with a module called SuperTest)
■ Test HTML responses to make sure your views are generating the correct HTML

(using a jQuery-like module called Cheerio)

Let’s get started putting these components together.

9.1 What is testing and why is it important?
It should come as no surprise that there’s often a disconnect between how you envi-
sion your code behaving and how it actually behaves. No programmer has ever written
bug-free code 100% of the time; this is part of our profession.

 If you were writing a simple calculator, for example, you’d know in your head
that you want it to do addition, subtraction, multiplication, and division. You can
test these by hand every time you make a change—after making this change, does 1
plus 1 still equal 2? Does 12 divided by 3 still equal 4?—but this can be tedious and
error-prone.

 You can write automated tests, which effectively puts these requirements into code.
You write code that says make sure, with my calculator, that 1 + 1 = 2 and that 12 ÷ 3
= 4. This is effectively a specification for your program, but it’s not written in English;
it’s written in code for the computer, which means that you can automatically verify it.
Testing is usually short for automated testing, and it simply means running test code that
verifies your real code.

 This automatic verification has a number of advantages. Most importantly, you can
be much more confident about your code’s reliability. If you’ve written a rigorous
specification that a computer can automatically run against your program, you can be
much more confident about its correctness once you’ve written it.

 It’s also really helpful when you want to change your code. A common problem is
that you have a functioning program, but you want some part of it to be rewritten
(perhaps to be optimized or cleaned up). Without tests, you’ll have to manually verify
that your old code behaves like the new code. With good automated tests, you can be
confident that this refactoring doesn’t break anything.
Licensed to <miler.888@gmail.com>

148 CHAPTER 9 Testing Express applications
 Automated testing is also a lot less tedious. Imagine if, every time you wanted to
test your calculator, you had to make sure that 1 + 1 = 2, 1 – 1 = 0, 1 – 3 = –2 and so on.
It’d get old pretty fast! Computers are fantastic at handling tedium like this. In short:
you write tests so you can automatically verify that your code (probably) works.

9.1.1 Test-driven development

Imagine you’re writing a little JavaScript that resizes images to proper dimensions, a
common task in web applications. When passed an image and dimensions, your func-
tion will return the image resized to those dimensions. Perhaps your boss has assigned
this task, or perhaps it’s your own impetus, but in any case, the specifications are
pretty clear.

 Let’s say that the previous paragraphs have moved you, that I’ve convinced you
to write automated tests for this. When do you write the tests? You could write the
image resizer and then write the tests, but you could also switch things up and write
the tests first.

 Writing tests first has a number of advantages. When you write tests first, you’re lit-
erally codifying your specification. When you’ve finished writing your tests, you’ve told
the computer how to ask, “Is my code finished yet?” If you have any failing tests, then
your code isn’t conforming to the specification. If all of your tests pass, then you know
that your code works as you specified. Writing the code first might mislead you and
you’ll write incomplete tests.

 You’ve probably used an API that’s really pleasant to work with. The code is simple
and intuitive. When you write tests first, you’re forced to think about how your code
should work before you’ve even written it. This can help you design what some people
call dream code, the easiest interface to your code. TDD can help you see the big pic-
ture about how your code should work and make for a more elegant design.

 This “write tests first” philosophy is called test-driven development, shortened to TDD.
It’s so named because your tests dictate how your code forms.

 TDD can really help you, but sometimes it can slow you down. If your specifica-
tions are unclear, you could spend a lot of time writing tests, only to realize that you
don’t want to implement what you set out to! Now you have all of these useless tests
and a lot of wasted time. TDD can limit your flexibility, especially if your specifica-
tions are a little foggy. And if you’re not writing tests at all, then TDD is contrary to
your very philosophy!

 Some folks use TDD for all their development—test first or go home. Others are
hugely against it. It’s not a silver bullet, nor is it a deadly poison; decide whether
TDD is right for you and your code. We’ll be using TDD in this chapter, but don’t
take that as an unconditional endorsement. It’s good for some situations and not so
good for others.
Licensed to <miler.888@gmail.com>

149What is testing and why is it important?
HOW TDD WORKS: RED, GREEN, REFACTOR

The TDD cycle usually works in three repeating steps,
called red, green, refactor, as shown in figure 9.1:

1 The red step. Because it’s TDD, you write your
tests first. When you write these tests before you
write any of the real code, none of your tests
will pass—how could they when no real code
has been written? During the red step, you
write all of your tests and run them to watch
them all fail. This step is so named for the red
color that you usually see when you have a fail-
ing test.

2 The green step. Now that you’ve written all of your tests, you begin to fill in the
real code to satisfy all the tests. As you make progress, your tests will slowly go
from red (failing) to green (passing). Like the previous step, it’s called the
green step because you typically see green for a passing test. Once you’re all
green (all of your tests pass), you’re ready for the step 3.

3 The refactor step. If all of your tests are green, that means all of your code works,
but it might not be perfect. Perhaps one of your functions is slow or you’ve cho-
sen bad variable names. Like a writer cleaning up a draft of a book, you go back
and clean up the code. Because you have all of your tests, you can refactor with-
out worrying that you’re breaking some unforeseen part of your code.

4 Repeat the process. You probably haven’t written all of your code for the project,
so go back to step 1 and write tests for the next part.

Here’s how you might use red-green-refactor for your image resizer:

■ The red step. You’d write some of your tests. For example, if you pass it a JPEG
image, your function should return a JPEG image; if you pass it a PNG image,
your function should return a PNG image. These tests aren’t complete, but it’s a
good starting point.

■ The green step. Now that you have some tests, you’ll fill in the code to make your
tests pass. Note that you haven’t written any tests that say that you should resize
the image, only that you should return the same file type. So you don’t write the
image resizing yet! You simply return the image and all of your tests can pass.

■ The refactor step. Once all of your tests pass, you can go back and clean up the
code you’ve written. You might have cut corners in the previous step or you
might be able to make your code faster. This is your chance to clean things up
and make sure the tests still pass.

■ Repeat the process. Go back to the red step and add failing tests for resizing JPEG
images, then implement JPEG resizing to make the tests green, then refactor,
and repeat.

red

refactor green

Figure 9.1 The repeating red-
green-refactor cycle of TDD
Licensed to <miler.888@gmail.com>

150 CHAPTER 9 Testing Express applications
9.1.2 Cardinal rule: when in doubt, test

In short, you can almost never have too many tests. As you can likely imagine, success-
ful tests don’t necessarily mean that your code works, but it’s a good start. For example,
if you were testing a function, you could test that the function is a function. That’s a
very valid thing to test, but if it’s your only test, then you might be misled into thinking
that your code works when all of your tests succeed.

 Because of that, you want to test as much of your code as you can. You want to poke
at every (reasonable) nook and cranny of your software to make sure it performs as
you expect. The more passing tests you have, the more you approach certainty that
your code works as you expect. You can never be 100% sure—something might break
somewhere along the line that you didn’t think of—but if you’ve thrown everything
you can possibly think of at your code, it’s probably working.

Lost time is among the only reasons not to write tests. This is both lost time for the
computer—some tests can be computationally expensive—and lost time for you as a
human being—it takes time to type the tests.

9.2 Introducing the Mocha testing framework
Just as it’s possible to write web servers with only Node, it’s possible to write tests
with only Node. You could create a file that checked a bunch of conditions to make
sure everything was working as normal, and then you could output the results with
console.log. Like using Express, you might find this raw method to be verbose and
find yourself having to write a lot of boilerplate code just to write tests.

 Mocha (https://mochajs.org/) is a testing framework that helps to reduce some of
this headache. (It’s written by the creator of Express, by the way.) It gives you a nice
syntax for organizing your tests and has several other features like asynchronous test
support and easy-to-read output. It’s not specifically tied to Express, so you can use it
to test Express applications, JavaScript functions, database models, and anything else
that runs inside the Node runtime.

Code coverage
Testing can make you more confident about your code, but it’s just one method. As
we discussed at the beginning of the chapter, there are plenty of other methods like
peer reviews and code linters. An extension of testing to further boost your confi-
dence is the idea of code coverage.

Code coverage tools see how much of your code is covered by your tests. You could
imagine writing 10 passing tests for your code but completely ignoring one of your
functions, which is totally broken! Code coverage tools tell you what parts of your
code are untouched by tests and therefore untested. In the Node world, the prevailing
code coverage tool seems to be Istanbul (https://github.com/gotwarlost/istanbul).
We won’t cover it here, but if you’re looking for even greater confidence, take a look
at Istanbul.
Licensed to <miler.888@gmail.com>

https://mochajs.org/
https://github.com/gotwarlost/istanbul

151Introducing the Mocha testing framework
 Before we start testing Express applications, let’s test a simple function to see how
it’s done. Imagine you want to write a function called capitalize that sets the first
character of a string in an uppercase letter and makes the rest of the string lowercase.
For example, "hello, WORLD" would become "Hello world".

9.2.1 How does Node.js testing work?

Testing in Node.js applications has three major parts: the real code (written by you),
the testing code (written by you), and the test runner (usually a third-party module,
probably not written by you):

■ The real code is whatever you want to test. This might be a function, or a database
model, or an Express server. In a Node.js context, this is anything that assigns
something to module.exports.

■ The test code tests your real code. This will require whatever you want to test and
then start asking questions about it. Does the function return what it should
return? Do your objects behave as they should?

■ The test runner is an executable that runs on your computer. It looks at your test
code and runs it. Test runners commonly print out things like “These tests
succeeded, these tests failed, and here’s how” or “The tests took 100 millisec-
onds to run.” You’ll be using Mocha in this chapter, but you might’ve used Jas-
mine or QUnit in your JavaScript career. You might’ve used RSpec or JUnit in
another life.

Both the real code and your test code live in the same repository. You’ll also define
Mocha (your test runner) as a dependency, and you’ll install it locally in your
repository.

9.2.2 Setting up Mocha and the Chai assertion library

Let’s take a stab at writing a first version of this. Create a new directory and create one
file inside, capitalize.js. Then put the code from the following listing inside it.

function capitalize(str) {
 var firstLetter = str[0].toUpperCase();
 var rest = str.slice(1).toLowerCase();
 return firstLetter + rest;
}

module.exports = capitalize;

If you eyeball the code, it looks like it should work, but you need to write tests to
become more confident about that.

 Create a package.json file in the same directory, which should contain the follow-
ing code.

Listing 9.1 A first version of the capitalize function (in capitalize.js)
Licensed to <miler.888@gmail.com>

152 CHAPTER 9 Testing Express applications
{
 "private": true,
 "devDependencies": {
 "chai": "^1.9.2",
 "mocha": "^2.0.1"
 },
 "scripts": {
 "test": "mocha"
 }
}

You’re using two modules here: Mocha (www.mochajs.org) and Chai (http://chaijs.com).
Mocha is a testing framework. If you’ve ever used other JavaScript testing frameworks
like Jasmine, this should be familiar. At the end of the day, it’s the thing that actually
runs your tests. It’s the syntax you use to say “Here’s what I’m testing, let me set it up,
here’s where I test thing A, here’s where I test thing B, and so on.”

 Chai is an assertion library. There are a number of assertion libraries (including
one built into Node). Whereas Mocha lays out the tests, Chai (almost literally) says, “I
expect the helloWorld function to return 'hello, world'.” The actual syntax is
expect(helloWorld()).to.equal("hello, world"), which reads a lot like the previ-
ous English. If helloWorld works and returns "hello, world", your tests will pass. If it
doesn’t return "hello, world", an error will appear, telling you that things aren’t as
you expect.

 Mocha waits for an assertion library to throw an error. If no error is thrown, the
test passes. If an error is thrown, the test fails. That’s why you use Chai—it’s a nice way
to throw errors when your tests fail.

 The distinction between Mocha and Chai is important. Mocha is the test runner, so
there’s an actual executable that runs (you don’t ever type node my_tests.js nor do
you ever require it). Mocha injects global variables into your code—as you’ll see, these
globals exist to structure each of your tests. Inside of each of these tests, you use Chai
to actually test your code. When you test your capitalization library, you’ll use Mocha
to break your tests into pieces like “The capitalization library capitalizes single words”
and “The capitalization library doesn’t break if you pass it the empty string.” At the
Chai level, you’ll call your capitalization library and make sure that your module’s out-
put matches what you expect.

9.2.3 What happens when you run your tests

As you might expect, you’ll want to run these tests written with Mocha and Chai in
order to make sure that your code works. How do you do this?

 First, as shown in listing 9.2, you’ve defined the test script in your package.json.
This allows you to type npm test into the command line. This runs Mocha, which in
turn runs your tests, as you can see in figure 9.2.

 You have everything set up. It’s time to start writing your tests.

Listing 9.2 The package.json for the capitalize function

As always, your version
numbers may vary.

Runs Mocha to
run your tests
Licensed to <miler.888@gmail.com>

http://chaijs.com
http://www.mochajs.org

153Introducing the Mocha testing framework

Des
specific

in the
topic.
Mocha
9.2.4 Writing your first test with Mocha and Chai

Now that you’ve written a first version of your capitalization function, you’ll write a
test to see if it works. Create a folder called test in the root of your project; this is
where your test code will live. Inside that directory, create a file for testing your capi-
talization; I called mine capitalize.js. Put the code from the following listing inside.

var capitalize = require("../capitalize");

var chai = require("chai");
var expect = chai.expect;

describe("capitalize", function() {

 it("capitalizes single words", function() {
 expect(capitalize("express")).to.equal("Express");
 expect(capitalize("cats")).to.equal("Cats");
 });

});

So what’s going on here? First, you require your module so that you can test it. Next,
you require Chai and use its expect property so that you can use it to make assertions
later on.

Listing 9.3 Your first test for capitalize (in test/capitalize.js)

When you type “npm test” ...

... npm looks inside your package.json
for the “test” script.

It calls the Mocha executable
you’ve installed into
node_modules ...

... which injects global variables
and then runs all of your tests
in the test directory.

npm test

package.json

"scripts": {

"test mocha": " "

}

node_modules/.bin/mocha

test/*.js

Figure 9.2 What happens when you type npm test into your
command line

Requires the function
you’re going to test

Requires Chai, then uses the expect
property to make assertions in your testscribes

ations
 same
At the
 level.

A specification with a title and
code to run. At the Mocha level.

Does the actual assertions.
At the Chai level.
Licensed to <miler.888@gmail.com>

154 CHAPTER 9 Testing Express applications
 Next, you describe a suite of tests. This is basically a component of your applica-
tion; this could be a class or just a slew of functions. This suite is called “capitalize”; it’s
English, not code. In this case, this suite describes the capitalization function.

 Inside this suite, you define a test (you’ll add more in a moment). It’s a JavaScript
function that says what some piece of your program should do. It says it in plain Eng-
lish (“It capitalizes single words”) and in code. For each suite, you can have a number
of tests for tests you want to do.

 Finally, inside the test, you expect the result of capitalize("express") to equal
"Express", and the same capitalization should happen for "cats".

 With respect to your code, running npm test goes through a flow like that shown
in figure 9.3.

If you go to the root of your project and type npm test, you’ll see something like the
following output:

capitalize
 ✓ capitalizes single words

1 passing (9ms)

That means you’ve run one test, and it passes! Congratulations—you’ve written your
first test. You don’t know that everything works 100%, but you know that it properly
capitalizes the first letter of two different words.

 You’re not out of the woods yet; there are more tests to write to become more con-
fident that your code works.

9.2.5 Adding more tests

You’ve written a single test so far, and it’s showed you that your code isn’t totally bro-
ken. But you don’t know if it works on more complex inputs. What would happen if
you passed it a string with no letters? What about an empty string? You can see that
you’re capitalizing the first letter, but are you lowercasing the rest of the string? Let’s
add more tests to test the unhappy paths.

npm test

package.json

"scripts": {

"test mocha": " "

}

node_modules/.bin/mocha

test/capitalize.js

Figure 9.3 Typing npm test will
produce this flow and ultimately
end up running the code inside
test/capitalize.js.
Licensed to <miler.888@gmail.com>

155Introducing the Mocha testing framework
 Start by adding another relatively simple test: does it make the rest of the string
lowercase? You’ll leave everything from before and add a new test to test/capitalize.js,
as shown in the next listing.

// …

describe("capitalize", function() {

 it("capitalizes single words", function() { /* … * / });

 it("makes the rest of the string lowercase", function() {
 expect(capitalize("javaScript")).to.equal("Javascript");
 });

});

You can run your tests with npm test (npm t for short), and you should see something
like this:

capitalize
 ✓ capitalizes single words
 ✓ makes the rest of the string lowercase

2 passing (10ms)

Cool! Now you’re more confident that you’re capitalizing the first letter and lowercas-
ing the rest of the string. But you’re not safe yet.

 What about adding a test for the empty string? Capitalizing the empty string
should only return the empty string, right? Write the test in the following listing to see
if that happens.

// …

describe("capitalize", function() {

 // …

 it("leaves empty strings alone", function() {
 expect(capitalize("")).to.equal("");
 });

});

Run npm test again to run this new test (and all the others). You should see some-
thing like the following output:

capitalize
 ✓ capitalizes single words
 ✓ makes the rest of the string lowercase
 1) leaves empty strings alone

Listing 9.4 Another test for capitalize (in test/capitalize.js)

Listing 9.5 Testing capitalization of the empty string (in test/capitalize.js)

Makes sure it
“makes the rest
of the string
lowercase”

You expect the capitalization of
“javaScript” to equal “Javascript.”
Licensed to <miler.888@gmail.com>

156 CHAPTER 9 Testing Express applications
2 passing (10ms)
1 failing

1) capitalize leaves empty strings alone:
 TypeError: Cannot call method 'toUpperCase' of undefined
 at capitalize (/path/to/capitalizeproject/capitalize.js:2:28)
 …

Uh oh! Looks like there’s a red/failing test. Let’s examine it to see what’s wrong.
 First, you can see that the error occurs when you run the “leaves empty strings

alone” test. The error is a TypeError, and it’s telling you that you can’t call toUpper-
Case on undefined. You can also see a stack trace, which starts on line 2 of capital-
ize.js. Here’s the line that’s causing the error:

var firstLetter = str[0].toUpperCase();

Looks like str[0] is undefined when you pass the empty string, so you’ll need to
make sure it’s defined. Replace the use of square brackets with the charAt method.
Your new-and-improved function should look the one in the next listing.

function capitalize(str) {
 var firstLetter = str.charAt(0).toUpperCase();
 var rest = str.slice(1).toLowerCase();
 return firstLetter + rest;
}

module.exports = capitalize;

Rerun your tests with npm test and you should see everything green!

capitalize
 ✓ leaves empty strings alone
 ✓ capitalizes single words
 ✓ makes the rest of the string lowercase

3 passing (11ms)

You can add a few more tests to make sure your code is robust. You’ll add a test that
doesn’t try to capitalize any letters. You’ll also make sure it properly capitalizes multi-
word strings. You should also make sure it leaves a string alone if it’s already properly
capitalized. The new tests in the following listing should pass with the code you
already have.

// …

it("leaves strings with no words alone", function() {
 expect(capitalize(" ")).to.equal(" ");
 expect(capitalize("123")).to.equal("123");
});

Listing 9.6 The new capitalize.js

Listing 9.7 New tests for capitalization (in test/capitalize.js)

Check out
this new-and-
improved line!
Licensed to <miler.888@gmail.com>

157Introducing the Mocha testing framework
it("capitalizes multiple-word strings", function() {
 expect(capitalize("what is Express?")).to.equal("What is express?");
 expect(capitalize("i love lamp")).to.equal("I love lamp");
});

it("leaves already-capitalized words alone", function() {
 expect(capitalize("Express")).to.equal("Express");
 expect(capitalize("Evan")).to.equal("Evan");
 expect(capitalize("Catman")).to.equal("Catman");
});

// …

Run npm test and you should see your tests pass.
 Finally, you’ll try to throw one more curveball at your function: the String object.

Every JavaScript style guide will warn you against using the String object—it’s bad
news that can cause unexpected behavior, like they say about == or eval. It’s possible
that you don’t even know about this feature of JavaScript, which is for the best,
because you should never use it.

 Unfortunately, there are inexperienced programmers out there (and others are,
sadly, fools). Some of them might be using your code. You could argue that bugs are
their fault, but you could also argue that your code shouldn’t be the problem. That’s
why you should test your function with the String object, just in case. Let’s write one
last test that uses the String object, as shown in the next listing.

// …

it("capitalizes String objects without changing their values",

➥ function() {
 var str = new String("who is JavaScript?");
 expect(capitalize(str)).to.equal("Who is javascript?");
 expect(str.valueOf()).to.equal("who is JavaScript?");
});

// …

You have seven tests for your little capitalization function; run npm test one last time
to make sure they all pass:

capitalize
 ✓ leaves empty strings alone
 ✓ leaves strings with no words alone
 ✓ capitalizes single words
 ✓ makes the rest of the string lowercase
 ✓ capitalizes multiple-word strings
 ✓ leaves already-capitalized words alone
 ✓ capitalizes String objects without changing their values

7 passing (13ms)

Listing 9.8 Testing with the String object

str.valueOf()
converts the
String object to
a normal string
Licensed to <miler.888@gmail.com>

158 CHAPTER 9 Testing Express applications
Look at you! You’re now pretty sure your capitalization function works, even when
passed a variety of odd strings.

9.2.6 More features of Mocha and Chai

So far, you’ve only seen how you can use Mocha and Chai to test equality. Effec-
tively, you’ve used a glorified equality operator. But these two modules can do much
more than that. We won’t go through all of the options here, but we’ll look at a
couple of examples.

RUNNING CODE BEFORE EACH TEST

It’s common to run setup code before you run your assertions. Perhaps you’re defin-
ing a variable to be manipulated or spooling up your server. If you’re doing this setup
across many tests, you can use the Mocha beforeEach function to help reduce the
amount of repeated code.

 Let’s say you’ve made a User model and you want to test it. In every single test,
you’re creating a User object and want to test it. The next listing shows how you might
do that.

describe("User", function() {

 var user;
 beforeEach(function() {
 user = new User({
 firstName: "Douglas",
 lastName: "Reynholm",
 birthday: new Date(1975, 3, 20)
 });
 });

 it("can extract its name", function() {
 expect(user.getName()).to.equal("Douglas Reynholm");
 });

 it("can get its age in milliseconds", function() {
 var now = new Date();
 expect(user.getAge()).to.equal(now - user.birthday);
 });

});

The code in the previous listing tests some of the functionality of an imaginary User
object, but it doesn’t have code to redefine an example User object inside every test
(inside every it block); it defines them in a beforeEach block, which redefines the
user before running each test.

Listing 9.9 Using Mocha’s beforeEach feature

Runs before every
test, so that the
user is defined
inside every test.
Licensed to <miler.888@gmail.com>

159Testing Express servers with SuperTest
TESTING FOR ERRORS

If you pass a string to your capitalization function, everything should work normally.
But if you pass a non-string, like a number or undefined, you want your function to
throw some kind of error. You can use Chai to test this, as shown in the next listing.

// …

it("throws an error if passed a number", function() {
 expect(function() { capitalize(123); }).to.throw(Error);
});

// …

This will test that calling capitalize with 123 throws an error. The only tricky bit is
that you have to wrap it in a function. This is because you don’t want your test code to
create an error—you want that error to be caught by Chai.

REVERSING TESTS

You might want to test that a value equals another value or that a function throws an
error, but you might also want to test that a value doesn’t equal another value or that a
function doesn’t throw an error. In the spirit of Chai’s almost-readable-as-English syn-
tax, you can use .not to reverse your test, as shown in the following listing.

 Let’s say that you want to make sure that capitalizing “foo” doesn’t equal “foo.”
This is a bit of a contrived example, but you might want to make sure that your capital-
ization function does something.

// ...

it("changes the value", function() {
 expect(capitalize("foo")).not.to.equal("foo");
});

// …

We’ve only begun to scratch the surface of what Chai can do. For more of its features,
check out the documentation at http://chaijs.com/api/bdd/.

9.3 Testing Express servers with SuperTest
The previous techniques are useful for testing business logic like model behavior or
utility functions. These are often called unit tests; they test discrete units of your app.
But you might also want to test the routes or middleware of your Express applications.
You might want to make sure that your API endpoints are returning the values they
should, or that you’re serving static files, or a number of other things. These are often
called integration tests because they test the integrated system as a whole, rather than
individual pieces in isolation.

Listing 9.10 Using Chai to test for errors

Listing 9.11 Negating tests

Using .not reverses
your condition
Licensed to <miler.888@gmail.com>

http://chaijs.com/api/bdd/

160 CHAPTER 9 Testing Express applications
 You’ll use the SuperTest module (https://github.com/visionmedia/supertest) to
accomplish this. SuperTest spools up your Express server and sends requests to it.
Once the requests come back, you can make assertions about the response. For
example, you might want to make sure that you get an HTTP 200 status code when
you send a GET request to the homepage. SuperTest will send that GET request to
the homepage and then, when you get the response, make sure it has 200 as its
HTTP status code. You can use this to test the middleware or routes that you define
in your application.

 Most browsers send a header called User-Agent that identifies the type of browser
to the server. This is often how websites serve mobile versions of sites to you if you’re
on a mobile device: a server can see that you’re on a mobile device and send you a dif-
ferent version of the page.

 Let’s build “What’s My User Agent?” a simple application for getting the User
Agent string of your users. It will support a classic HTML view when you visit it in a
browser. You’ll also be able to get the user’s User Agent as plain text. There will be just
one route for these two responses. If a visitor comes to the root of your site (at /) and
doesn’t request HTML (as most web browsers would), they’ll be shown their User
Agent as plain text. If they visit the same URL but their Accepts header mentions
HTML (as web browsers do), they’ll be given their User Agent as an HTML page. Cre-
ate a new directory for this project, and create a package file in the folder, as shown in
the listing that follows.

{
 "name": "whats-my-user-agent",
 "private": true,
 "scripts": {
 "start": "node app",
 "test": "mocha"
 },
 "dependencies": {
 "ejs": "^1.0.0",
 "express": "^4.10.1"
 },
 "devDependencies": {
 "mocha": "^2.0.1",
 "cheerio": "^0.17.0",
 "supertest": "^0.14.0"
 }
}

In the previous examples, you wrote your code and then wrote the tests. In this exam-
ple, you’ll flip it around and do TDD. You know what you want your application to do,
so you can write the tests right now without worrying about how you implement it.
Your tests will fail at first, because you won’t have written any real code! After your
tests are written, you’ll go back and fill in the application to make your tests pass.

Listing 9.12 package.json for “What’s My User Agent?”

Uses EJS to
render the
HTML page

You will soon learn
what these modules do.
Licensed to <miler.888@gmail.com>

https://github.com/visionmedia/supertest

161Testing Express servers with SuperTest
 The TDD approach isn’t always the best; sometimes you aren’t quite sure what your
code should look like, so it’d be a bit of a waste to write tests. There are huge flame
wars online about the pros and cons of TDD; I won’t reiterate them here, but you’ll try
TDD for this example.

 You’ll write tests for the two major parts of this application:

■ The plain-text API
■ The HTML view

You’ll start by testing the plain-text API.

9.3.1 Testing a simple API

Because it’s the simpler, you’ll start by testing the plain-text API. In plain English, this
test will need to send a request to your server at the / route, so the server knows that
you want plain text in the first place. You’ll want to assert that (1) the response is the
right User Agent string and (2) the response comes back as plain text. Let’s codify this
English into Mocha tests.

 Create a folder called test for all your tests, and create a file for testing the plain-
text API; I called mine txt.js. Inside, put the skeleton shown in the following listing.

var app = require("../app");

describe("plain text response", function() {

 it("returns a plain text response", function(done) {
 // ...
 });

 it("returns your User Agent", function(done) {
 // ...
 });

});

So far, this is just a skeleton, but it’s not too different from what you had before when
you were testing your capitalization module. You’re requireing your app (which you
haven’t written yet), describing a suite of tests (plain-text mode, in this case), and then
defining two tests, one making sure you get a plain-text response and another that you
get the correct User-Agent string.

 Let’s fill in the first test, to make sure that your application returns a plain-text
response. Remember: what you’re testing doesn’t yet exist. You’re going to write the
tests, watch them fail, and then fill in the real code to make your tests pass.

 Your first test will need to make a request to the server, making sure to set the
Accept header to text/plain, and once it gets a response from the server, your test
should ensure that it comes back as text/plain. The SuperTest module will help you
with this, so require it at the top of your file. Then you’ll use SuperTest to make

Listing 9.13 Skeleton of plain-text tests (in test/txt.js)

You require your app,
because that’s what
you’ll be testing.

Defines
tests
Licensed to <miler.888@gmail.com>

162 CHAPTER 9 Testing Express applications

Y

S

requests to your server and see if it gives you the response you want. All of this is
shown in the next listing.

var supertest = require("supertest");

// …

it("returns a plain text response", function(done) {
 supertest(app)
 .get("/")
 .set("User-Agent", "my cool browser")
 .set("Accept", "text/plain")
 .expect("Content-Type", /text\/plain/)
 .expect(200)
 .end(done);
});

// …

Notice how you use SuperTest to test your application. It’s not quite like Chai in that it
reads like English, but it should be pretty straightforward. Here’s what you’re doing
with SuperTest, line by line:

■ You wrap your app up by calling supertest with app as an argument. This
returns a SuperTest object.

■ You call get on that SuperTest object with the route you want to request; in this
case, you want the application’s root (at “/”).

■ You set options on this request; in this case, you’re setting the HTTP Accept
header to text/plain and the User-Agent header to "my cool browser". You
call set multiple times because you want to set multiple headers.

■ In the first call to expect, you say “I want the Content-Type to match ‘text/
plain’.” Notice that this is a regular expression, not a string. You want to be a
little flexible here; the Content-Type could be “text/plain”, or it could be
“text/plain; charset=utf-8” or something like that. You want to test for the
plain-text content type but not for the specific character set because it’s ASCII in
this case, which is the same in most character encodings.

■ In the second call to expect, you’re making sure you get the HTTP status code
of 200, meaning “OK.” You could imagine writing a test for a nonexistent
resource, where you’d expect the status code to be 404 or any of the other many
HTTP status codes.

■ Finally, you call end with done. done is a callback function passed to you by Mocha,
which you use to signal that asynchronous tests (like this one) are all done.

Listing 9.14 Using SuperTest to check the response (in test/txt.js)

Must be called when
finished running
your test code

SuperTest builds
up the request.

ou visit
the "/"

URL.

ets the
User-
Agent

header

Sets a header
describing
what content
type we want
back from the
server

Expects the
content type
to match
"text/plain"

Expects the
HTTP status
code to be 200

Calls the done
callback because

our tests are
finished
Licensed to <miler.888@gmail.com>

163Testing Express servers with SuperTest
Next, you’ll fill in your second test to make sure that your application is returning the
right User Agent. It’ll look pretty similar to the previous one, but you’ll test the response
body. Fill in your second test like this.

// …

it("returns your User Agent", function(done) {
 supertest(app)
 .get("/")
 .set("User-Agent", "my cool browser")
 .set("Accept", "text/plain")
 .expect(function(res) {
 if (res.text !== "my cool browser") {
 throw new Error("Response does not contain User Agent");
 }
 })
 .end(done);
});

// …

The first three lines of this test and the last line should look similar to before; you
set up SuperTest to test your app, and when you’ve finished testing things, you
call done.

 The middle part calls expect with a function this time. This function throws
an error if res.text (the text that your application returns) isn’t equal to the
User-Agent header you passed in. If it is equal, then the function simply finishes
with no fuss.

 One last thing: you have some duplicate code here. In this test, you’re always mak-
ing the same request to your server: the same application, the same route, and the
same headers. What if you didn’t have to repeat yourself? Enter Mocha’s beforeEach
feature, as shown in the next listing.

// …

describe("plain text response", function() {

 var request;
 beforeEach(function() {
 request = supertest(app)
 .get("/")
 .set("User-Agent", "my cool browser")
 .set("Accept", "text/plain");
 });

Listing 9.15 Testing that your app returns the right User Agent string (in test/txt.js)

Listing 9.16 Reducing repetition in code with beforeEach (in test/txt.js)

Request setup
is the same as
before.

Throws an
error if you
don’t get the
right User
Agent string

Calls done
when finished

beforeEach runs
the same code
before every test in
this describe block
Licensed to <miler.888@gmail.com>

164 CHAPTER 9 Testing Express applications
 it("returns a plain text response", function(done) {
 request
 .expect("Content-Type", /text\/plain/)
 .expect(200)
 .end(done);
 });

 it("returns your User Agent", function(done) {
 request
 .expect(function(res) {
 if (res.text !== "my cool browser") {
 throw new Error("Response does not contain User Agent");
 }
 })
 .end(done);
 });

});

As you can see, you’re using beforeEach to remove repeated code. The benefits of this
really start to show as you have many tests with the same setup every time.

 Now that you’ve written your two tests, you can run them with npm test as a sanity
check. Because you haven’t made the file where your app will live, you should get an
error that contains something like “Cannot find module ‘../app’.” This is exactly what
you’d expect at this point: you’ve written the tests but no real code, so how in the
world could your tests pass? This is the red step in the red-green-refactor cycle.

 You can make the errors a little better by creating app.js in the root of your proj-
ect and putting a skeleton Express app inside, like this.

var express = require("express");

var app = express();

module.exports = app;

Your tests will still fail when running npm test. Your errors might look something
like this:

 html response
 1) returns an HTML response
 2) returns your User Agent

 plain text response
 3) returns a plain text response
 4) returns your User Agent

 0 passing (68ms)
 4 failing

 1) html response returns an HTML response:
 Error: expected 200 "OK", got 404 "Not Found"
 ...

Listing 9.17 Skeleton of app.js

You can use the
variable in tests
without repeating
yourself.
Licensed to <miler.888@gmail.com>

165Testing Express servers with SuperTest
 2) html response returns your User Agent:
 TypeError: Cannot read property 'trim' of null
 ...

 3) plain text response returns a plain text response:
 Error: expected "Content-Type" matching /text\/plain/, got "text/html;

charset=utf-8"
 ...

 4) plain text response returns your User Agent:
 Error: Response does not contain User Agent
 ...

No doubt, these are errors. But these errors are already leagues better than “Cannot
find module.” You can see that real things are being tested here.

 Let’s write your application to make these tests go from red (failing) to green
(passing).

9.3.2 Filling in the code for your first tests

Now that it’s time to write real code, put the code from the following listing inside
app.js in the root of your project.

var express = require("express");

var app = express();

app.set("port", process.env.PORT || 3000);

app.get("/", function(req, res) {
 res.send(req.headers["user-agent"]);
});

app.listen(app.get("port"), function() {
 console.log("App started on port " + app.get("port"));
});

module.exports = app;

The last line is the only thing that might seem new: you export the app. Normally,
when you’re running a file (like node app.js), you don’t need to export the app
because you don’t think of it as a module. But when you’re testing the application,
you’ll need to export it so that the outside world can poke at it and test it.

 If you run npm test now, you’ll see something like the following output:

plain text response
 1) returns a plain text response
 ✓ returns your User Agent

1 passing (29ms)
1 failing

Listing 9.18 First draft of app.js

Writes code to
return the User-
Agent header

Exports the
app for testing
Licensed to <miler.888@gmail.com>

166 CHAPTER 9 Testing Express applications
1) plain text response returns a plain text response:
 Error: expected "Content-Type" matching /text\/plain/, got "text/html;

charset=utf-8"
 at Test.assert …
 …

This is good! You’re not completely finished because only half of your tests pass, but it
looks like you’re returning the right User Agent. Add just one more line to make all of
your tests pass, as shown in the next listing.

// …

app.get("/", function(req, res) {
 res.type("text");
 res.send(req.headers["user-agent"]);
});

// …

Now, when you run npm test, you’ll see all of your tests pass!

plain text response
 ✓ returns a plain text response
 ✓ returns your User Agent

2 passing (38ms)

This is great; you’re now returning the plain-text responses you desire. Now you’re fin-
ished with the green step in the red-green-refactor cycle. In this case the final refactor
step is simple: you don’t have to do anything. Your code is so short and sweet that it
doesn’t need much of a cleanup yet.

 But wait, didn’t you also want to return HTML responses? Your tests shouldn’t be
passing yet, should they? You’re right, wise reader. Let’s write more tests and go back
to the red step.

9.3.3 Testing HTML responses

As we’ve seen, if the user requests plain text, they’ll get plain text. But if they want
HTML, they should get HTML, but they’re getting only plain text right now. To fix this
the TDD way, you’ll write tests to make sure the HTML stuff works, you’ll watch those
tests fail, and then you’ll fill in the rest of the code.

 Create test/html.js, which will hold the tests for the HTML part of your server. The
skeleton for this file will look pretty similar to what you’ve seen in the plain-text part
of your tests, but the innards of one of them will look different. The next listing shows
the skeleton of the HTML tests.

Listing 9.19 Making app.js return plain text

Content-Type must
be some variant of
plain text.
Licensed to <miler.888@gmail.com>

167Testing Express servers with SuperTest
var app = require("../app");

var supertest = require("supertest");

describe("html response", function() {

 var request;
 beforeEach(function() {
 request = supertest(app)
 .get("/")
 .set("User-Agent", "a cool browser")
 .set("Accept", "text/html");
 });

 it("returns an HTML response", function(done) {
 // …
 });

 it("returns your User Agent", function(done) {
 // …
 });

});

So far, this should look a lot like the code you had from your plain-text tests. You’re
requiring the app and SuperTest; you’re doing some test setup in a beforeEach block;
you’re making sure you’re getting HTML back and also the right User Agent.

 The first test in this file also looks pretty darn similar to the first one you wrote in
the other file. Let’s fill it in now, as shown in the next listing.

// …

it("returns an HTML response", function(done) {
 request
 .expect("Content-Type", /html/)
 .expect(200)
 .end(done);
});

// …

This is very similar to before. You’re testing for a response that contains html and you
want the HTTP status code to be 200.

 The next test is where things are different. First, you’ll write the code to get the
HTML response from the server. This next listing should look pretty similar to what
you’ve seen before.

Listing 9.20 Testing your HTML responses (in test/html.js)

Listing 9.21 Testing for an HTML response (in test/html.js)

This beforeEach is very
similar to before, but
you’re requesting text/
html instead of text/plain.
Licensed to <miler.888@gmail.com>

168 CHAPTER 9 Testing Express applications
// …

it("returns your User Agent", function(done) {
 request
 .expect(function(res) {
 var htmlResponse = res.text;
 // …
 })
 .end(done);
});

// …

But now it’s time to do something with that HTML. You don’t just want the User Agent
string to show up somewhere in the HTML. You want it to show up inside a specific
HTML tag. Your response will look something like the one in the following listing.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
</head>
<body>
 <h1>Your User Agent is:</h1>
 <p class="user-agent">Mozilla/5.0 (Windows NT 6.1; WOW64; rv:28.0) Gecko/

20100101 Firefox/36.0</p>
</body>
</html>

You don’t care too much about most of this HTML; the thing you want to test is inside
something with the class user-agent. How do you get it out?

 Enter Cheerio (https://cheeriojs.github.io/cheerio/), the final dependency from
our list of devDependencies. In short, Cheerio is jQuery for Node. That might
sound silly—why would you need to deal with the DOM (Document Object Model)
in an environment that doesn’t have a DOM?—but it’s exactly what you need here.
You need to be able to look through the HTML and find the User Agent inside. If
you were in the browser, you could use jQuery to do this. Because you’re in Node,
you’ll use Cheerio, which will be very familiar to anyone who knows jQuery. You’ll
use Cheerio to parse the HTML, find where the User Agent should be, and make
sure that it’s valid.

 Start by requiring Cheerio at the top of your test file, and then you’ll use Cheerio
to parse the HTML you get from your server, as shown here.

Listing 9.22 Getting the HTML response (in test/html.js)

Listing 9.23 What you might be looking for in your HTML responses
Licensed to <miler.888@gmail.com>

https://cheeriojs.github.io/cheerio/

169Testing Express servers with SuperTest
// …

var cheerio = require("cheerio");

// …

it("returns your User Agent", function(done) {
 request
 .expect(function(res) {
 var htmlResponse = res.text;
 var $ = cheerio.load(htmlResponse);
 var userAgent = $(".user-agent").html().trim();
 if (userAgent !== "a cool browser") {
 throw new Error("User Agent not found");
 }
 })
 .end(done);
});

// …

Here, you use Cheerio to parse your HTML and make sense of it as you do with jQuery.
Once you’ve parsed the HTML and gotten the value you want, you can run your tests
just like before! Cheerio makes parsing HTML easy, and you can use it to test HTML
responses.

 Now that you’ve written your two tests, you can run npm test. You should see your
plain-text tests pass as before, but your new HTML tests will fail because you haven’t
written the code yet—this is the red step. Let’s make those tests pass.

 If you’ve been following along so far, the code for this shouldn’t be too crazy. You’ll
make changes to your request handler and render an EJS view that will contain the
User Agent as your test expects.

 First, you need to modify your app.js. You’ll set up EJS as your view engine and then
render the HTML view when the client wants HTML, as shown in the following listing.

var express = require("express");
var path = require("path");

var app = express();

app.set("port", process.env.PORT || 3000);

var viewsPath = path.join(__dirname, "views");
app.set("view engine", "ejs");
app.set("views", viewsPath);

app.get("/", function(req, res) {
 var userAgent = req.headers["user-agent"] || "none";

Listing 9.24 Parsing HTML with Cheerio (in test/html.js)

Listing 9.25 Filling in app.js to support HTML responses

Initializes a
Cheerio object
from your HTML

Gets the User
Agent from
the HTML

Tests for a User Agent
just like before

Sets up your views with
EJS and makes sure you’re
using the views directory
Licensed to <miler.888@gmail.com>

170 CHAPTER 9 Testing Express applications
 if (req.accepts("html")) {
 res.render("index", { userAgent: userAgent });
 } else {
 res.type("text");
 res.send(userAgent);
 }
});

// …

This code shouldn’t be too wild if you’ve seen views before. You’re setting up EJS as
your view engine, assigning a path to it, and then rendering a view if the user
requests it.

 The last thing you’ll need to do is define the EJS view. Create views/index.ejs and
put the following code inside.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <style>
 html {
 font-family: sans-serif;
 text-align: center;
 }
 </style>
</head>
<body>
 <h2>Your User Agent is:</h2>
 <h1 class="user-agent">
 <%= userAgent %>
 </h1>
</body>
</html>

It’s time for the big moment. Run all of your tests with npm test, and you should see a
sea of positivity:

html response
 ✓ returns an HTML response
 ✓ returns your User Agent

plain text response
 ✓ returns a plain text response
 ✓ returns your User Agent

4 passing (95ms)

All of your tests pass! It’s all green! Happy days! Now you know how to test an applica-
tion with Mocha, Chai, SuperTest, and Cheerio.

Listing 9.26 views/index.ejs

If the request accepts
HTML, renders the
index template…

…otherwise, sends
the User Agent
string as plain text
Licensed to <miler.888@gmail.com>

171Summary
 The biggest takeaway from this chapter isn’t a series of tools; it’s the fact that
through testing, you can be much more confident about your application’s behavior.
When you write code, you want your code to work as you intend. That’s often hard to
do, but with testing, you can be a little surer that things work as you intend.

9.4 Summary
■ You want to test because you want to be more confident about your code.
■ There are a few kinds of testing, from low-level unit tests to high-level integra-

tion tests.
■ Test-driven development (TDD) is a development style where you write the tests

before you write the real code. Typically, you work in the red-green-refactor
cycle: red while your tests fail, green after your tests are passing, and refactor
your code once things work.
Licensed to <miler.888@gmail.com>

Security
In chapter 8, I told you that I had three favorite chapters. The first was chapter 3,
where I discussed the foundations of Express in an attempt to give you a solid
understanding of the framework. The second favorite was chapter 8, where your
applications used databases to become more real. Welcome to my final favorite: the
chapter about security.

 I probably don’t have to tell you that computer security is important, and it’s
becoming more so by the day. You’ve surely seen news headlines about data
breaches, cyberwarfare, and hacktivism. As our world moves more and more into
the digital sphere, our digital security becomes more and more important.

This chapter covers
■ Keeping your Express code bug-free, using

tools and testing
■ Dealing with attacks; knowing how they work

and how to prevent them
■ Handling the inevitable server crash
■ Auditing your third-party code
172

Licensed to <miler.888@gmail.com>

173Keeping your code as bug-free as possible
 Keeping your Express applications secure should (hopefully) be important—who
wants to be hacked? In this chapter, we’ll discuss ways your applications could be sub-
verted and how to defend yourself.

 This chapter doesn’t have as much of a singular flow as the others. You’ll find your-
self exploring a topic and then jumping to another, and although there may be some
similarities, most of these attacks are relatively disparate.

10.1 The security mindset
Famous security technologist Bruce Schneier describes something that he calls the
security mindset:

Uncle Milton Industries has been selling ant farms to children since 1956.
Some years ago, I remember opening one up with a friend. There were no
ants included in the box. Instead, there was a card that you filled in with
your address, and the company would mail you some ants. My friend
expressed surprise that you could get ants sent to you in the mail.

I replied: “What’s really interesting is that these people will send a tube of
live ants to anyone you tell them to.”

Security requires a particular mindset. Security professionals—at least the
good ones—see the world differently. They can’t walk into a store without
noticing how they might shoplift. They can’t use a computer without
wondering about the security vulnerabilities. They can’t vote without
trying to figure out how to vote twice. They just can’t help it.

“The Security Mindset” by Bruce Schneier, at
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

Bruce Schneier isn’t advocating that you should steal things and break the law. He’s
suggesting that the best way to secure yourself is to think like an attacker—how could
someone subvert a system? How could someone abuse what they’re given? If you can
think like an attacker and seek out loopholes in your own code, then you can figure
out how to close those holes and make your application more secure.

 This chapter can’t possibly cover every security vulnerability out there. Between
the time I write this and the time you read this, there will likely be a new attack vector
that could affect your Express applications. Thinking like an attacker will help you
defend your applications against the endless onslaught of possible security flaws.

 Just because I’m not going through every security vulnerability doesn’t mean I
won’t go through the common ones. Read on!

10.2 Keeping your code as bug-free as possible
At this point in your programming career, you’ve likely realized that most bugs are
bad and that you should take measures to prevent them. It should come as no sur-
prise that many bugs can cause security vulnerabilities. For example, if a certain
kind of user input can crash your application, a hacker could simply flood your
Licensed to <miler.888@gmail.com>

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

174 CHAPTER 10 Security
servers with those requests and bring the service down for everyone. You definitely
don’t want that!

 There are numerous methods to keep your Express applications bug-free and
therefore less susceptible to attacks. In this section, I won’t cover the general princi-
ples for keeping your software bug-free, but here are a few to keep in mind:

■ Testing is terribly important. We discussed testing in the previous chapter.
■ Code reviews can be quite helpful. More eyes on the code almost certainly means

fewer bugs.
■ Don’t reinvent the wheel. If someone has made a library that does what you want,

you should probably use the library, but make sure it is well-tested and reliable!
■ Stick to good coding practices. We’ll go over Express- and JavaScript-specific issues,

but you should make sure your code is well-architected and clean.

We’ll talk about Express specifics in this section, but the principles just mentioned are
hugely helpful in preventing bugs and therefore in preventing security issues.

10.2.1 Enforcing good JavaScript with JSHint

At some point in your JavaScript life, you’ve probably heard of JavaScript: The Good
Parts (O’Reilly Media, 2008). If you haven’t, it’s a famous book by Douglas Crockford,
the inventor of JSON (or the discoverer, as he calls it). It carves out a subset of the lan-
guage that’s deemed good, and the rest is discouraged.

 For example, Crockford discourages the use of the double-equals operator (==)
and instead recommends sticking to the triple-equals operator (===). The double-
equals operator does type coercion, which can get complicated and can introduce
bugs, whereas the triple-equals operator works pretty much how you’d expect.

 In addition, a number of common pitfalls befall JavaScript developers that aren’t
necessarily the language’s fault. To name a few: missing semicolons, forgetting the var
statement, and misspelling variable names.

 If there were a tool that enforced good coding style and a tool that helped you fix
errors, would you use them? What if they were just one tool? I’ll stop you before your
imagination runs too wild: there’s a tool called JSHint (http://jshint.com/).

 JSHint looks at your code and points out what it calls suspicious use. It’s not technically
incorrect to use the double-equals operator or to forget var, but it’s likely to be an error.

 You’ll install JSHint globally with npm install jshint -g. Now, if you type jshint
myfile.js, JSHint will look at your code and alert you to any suspicious usage or bugs.
The file in the following listing is an example.

function square(n) {
 var result n * n;
 return result;
}
square(5);

Listing 10.1 A JavaScript file with a bug

= sign is
missing.
Licensed to <miler.888@gmail.com>

http://jshint.com/

175Keeping your code as bug-free as possible
Notice that the second line has an error: it’s missing an equals sign. If you run JSHint
on this file (with jshint myfile.js), you’ll see the following output:

myfile.js: line 2, col 13, Missing semicolon.
myfile.js: line 3, col 18, Expected an assignment or function call and instead saw an

expression.

2 errors

If you see this, you’ll know that something’s wrong! You can go back and add the
equals sign, and then JSHint will stop complaining.

 In my opinion, JSHint works best when integrated with your editor of choice. Visit
the JSHint download page at http://jshint.com/install/ for a list of editor integrations.
Figure 10.1 shows JSHint integrated with the Sublime Text editor. Now, you’ll see the
errors before you even run the code!

JSHint has saved me a ton of time when working with JavaScript and has fixed count-
less bugs. I know some of those bugs have been security holes.

10.2.2 Halting after errors happen in callbacks

Callbacks are a pretty important part of Node. Every middleware and route in Express
uses them, not to mention … well, nearly everything else! Unfortunately, people make
a few mistakes with callbacks, and these can create bugs.

 See if you can spot the error in this code:

fs.readFile("myfile.txt", function(err, data) {
 if (err) {
 console.error(err);
 }
 console.log(data);
});

Figure 10.1 JSHint
integration in the Sublime
Text editor. Notice the
error on the left side of the
window and the message
at the bottom in the
status bar.
Licensed to <miler.888@gmail.com>

http://jshint.com/install/

176 CHAPTER 10 Security
In this code, you’re reading a file and outputting its contents with console.log if
everything works. But if it doesn’t work for some reason, you output the error and then
continue on to try to output the file’s data.

 If there’s an error, you should be halting execution. For example:

fs.readFile("myfile.txt", function(err, data) {
 if (err) {
 console.error(err);
 throw err;
 }
 console.log(data);
});

It’s usually important to stop if there’s any kind of error. You don’t want to be dealing
with errant results—this can cause your server to have buggy behavior.

10.2.3 Perilous parsing of query strings

It’s very common for websites to have query strings. For example, almost every search
engine you’ve ever used features a query string of some sort. A search for “crockford
backflip video” might look something like this:

http://mysearchengine.com/search?q=crockford+backflip+video

In Express, you can grab the query by using req.query, as shown in the next listing.

app.get("/search", function(req, res) {
 var search = req.query.q.replace(/\+/g, " ");
 // … do something with the search …
});

This is all well and good, unless the input isn’t exactly as you expect. For example, if a
user visits the /search route with no query named q, then you’d be calling .replace
on an undefined variable! This can cause errors.

 You’ll always want to make sure that your users are giving you the data you expect,
and if they aren’t, you’ll need to do something about it. One simple option is to provide
a default case, so if they don’t give anything, assume the query is empty. See the next
listing as an example.

app.get("/search", function(req, res) {
 var search = req.query.q || "";
 var terms = search.split("+");
 // … do something with the terms …
});

Listing 10.2 Grabbing req.query (note: contains bugs!)

Listing 10.3 Don’t assume your queries exist (note: still contains bugs!)

Contains the string
"crockford backflip video"

Adds a default value
if req.query.q is
undefined
Licensed to <miler.888@gmail.com>

177Keeping your code as bug-free as possible
This fixes one important bug: if you’re expecting a query string that isn’t there, you
won’t have undefined variables.

 But there’s another important gotcha with Express’s parsing of query strings: they
can also be of the wrong type (but still be defined)!

 If a user visits /search?q=abc, then req.query.q will be a string. It’ll still be a
string if they visit /search?q=abc&name=douglas. But if they specify the q variable
twice, like this

/search?q=abc&q=xyz

then req.query.q will be the array ["abc", "xyz"]. Now, if you try to call .replace
on it, it’ll fail again because that method isn’t defined on arrays. Oh, no!

 Personally, I think that this is a design flaw of Express. This behavior should be
allowed, but I don’t think that it should be enabled by default. Until they change it
(and I’m not sure they have plans to), you’ll need to assume that your queries could
be arrays.

 To solve this problem (and others), I wrote the arraywrap package (available at
https://www.npmjs.org/package/arraywrap). It’s a very small module; the whole thing
is only 19 lines of code. It’s a function that takes one argument. If the argument isn’t
already an array, it wraps it in an array. If the argument is an array, it returns the argu-
ment because it is already an array.

 You can install it with npm install arraywrap --save and then you can use it to
coerce all of your query strings to arrays, as shown in the following listing.

var arrayWrap = require("arraywrap");

// …

app.get("/search", function(req, res) {
 var search = arrayWrap(req.query.q || "");
 var terms = search[0].split("+");
 // … do something with the terms …
});

Now, if someone gives you more queries than you expect, you just take the first one
and ignore the rest. This still works if someone gives you one query argument or no
query argument. Alternatively, you could detect if the query was an array and do some-
thing different there.

 This brings us to a big point of the chapter: never trust user input. Assume that every
route will be broken in some way.

Listing 10.4 Don’t assume your queries aren’t arrays

Note the
changed line.
Licensed to <miler.888@gmail.com>

https://www.npmjs.org/package/arraywrap

178 CHAPTER 10 Security
10.3 Protecting your users
Governments have had their sites defaced; Twitter had a kind of tweet virus; bank
account information has been stolen. Even products that aren’t dealing with particu-
larly sensitive data can still have passwords leaked—Sony and Adobe have been caught
up in such scandals. If your site has users, you’ll want to be responsible and protect
them. There are a number of things you can do to protect your users from harm, and
we’ll look at those in this section.

10.3.1 Using HTTPS

In short, use HTTPS instead of HTTP. It helps protect your users against all kinds of
attacks. Trust me—you want it!

 There are two pieces of Express middleware that you’ll want to use with HTTPS.
One will force your users to use HTTPS and the other will keep them there.

FORCE USERS TO HTTPS
The first middleware we’ll look at is express-enforces-ssl. As the name suggests, it
enforces SSL (HTTPS). Basically, if the request is over HTTPS, it continues on to the
rest of your middleware and routes. If not, it redirects to the HTTPS version.

 To use this module, you’ll need to do two things.

1 Enable the “trust proxy” setting. Most of the time, when you deploy your appli-
cations, your server isn’t directly connecting to the client. If you’re deployed to
the Heroku cloud platform (as you’ll explore in chapter 11), Heroku servers sit
between you and the client. To tell Express about this, you need to enable the
“trust proxy” setting.

2 Call the middleware.

Make sure you npm install express-enforces-ssl, and then run the code in the fol-
lowing listing.

var enforceSSL = require("express-enforces-ssl");
// …
app.enable("trust proxy");
app.use(enforceSSL());

There’s not much more to this module, but you can see more at https://github.com/
aredo/express-enforces-ssl.

KEEP USERS ON HTTPS
Once your users are on HTTPS, you’ll want to tell them to avoid going back to HTTP.
New browsers support a feature called HTTP Strict Transport Security (HSTS). It’s a
simple HTTP header that tells browsers to stay on HTTPS for a period of time.

Listing 10.5 Enforcing HTTPS in Express
Licensed to <miler.888@gmail.com>

https://github.com/aredo/express-enforces-ssl
https://github.com/aredo/express-enforces-ssl

179Protecting your users
 If you want to keep your users on HTTPS for one year (approximately 31,536,000
seconds), you’d set the following header:

Strict-Transport-Security: max-age=31536000

You can also enable support for subdomains. If you own slime.biz, you’ll probably
want to enable HSTS for cool.slime.biz.

 To set this header, you’ll use Helmet (https://github.com/helmetjs/helmet), a
module for setting helpful HTTP security headers in your Express applications. As
you’ll see throughout the chapter, it has various headers it can set. We’ll start with its
HSTS functionality.

 First, as always, npm install helmet in whatever project you’re working on. I’d also
recommend installing the ms module, which translates human-readable strings (like
"2 days") into 172,800,000 milliseconds. Now you can use the middleware, as shown
in the next listing.

var helmet = require("helmet");
var ms = require("ms");
// …
app.use(helmet.hsts({
 maxAge: ms("1 year"),
 includeSubdomains: true
}));

Now, HSTS will be set on every request.

WHY CAN’T I JUST USE HSTS? This header is only effective if your users are
already on HTTPS, which is why you need express-enforces-ssl.

10.3.2 Preventing cross-site scripting attacks

I probably shouldn’t say this, but there are a lot of ways you could steal my money. You
could beat me up and rob me, you could threaten me, or you could pick my pocket. If
you were a hacker, you could also hack into my bank and wire a bunch of my money to
you (and of all the options listed, this is the one I most prefer).

 If you could get control of my browser, even if you didn’t know my password, you
could still get my money. You could wait for me to log in and then take control of my
browser. You’d tell my browser to go to the “wire money” page on my bank and take a
large sum of money. If you were clever, you could hide it so that I’d never even know it
happened (until, of course, all of my money was gone).

 But how would you get control of my browser? Perhaps the most popular way
would be through use of a cross-site scripting (XSS) attack.

Listing 10.6 Using Helmet’s HSTS middleware

There are approximately
31,536,000 seconds in a year.
Licensed to <miler.888@gmail.com>

https://github.com/helmetjs/helmet

180 CHAPTER 10 Security
 Imagine that, on my bank’s homepage, I can see a list
of my contacts and their names, as shown in figure 10.2.

 Users have control over their names. Bruce Lee can
go into his settings and change his name to Bruce
Springsteen if he wants to. But what if he changed his
name to this:

Bruce Lee<script>transferMoney(1000000,
"bruce-lee’s-account");</script>

The list of contacts would still show up the same, but now
my web browser will also execute the code inside the
<script> tag! Presumably, this will transfer a million dol-
lars to Bruce Lee’s account, and I’ll never be the wiser. Bruce Lee could also add
<script src="http://brucelee.biz/hacker.js"></script> to his name. This script
could send data (like login information, for example) to brucelee.biz.

 There’s one big way to prevent XSS: never blindly trust user input.

ESCAPING USER INPUT

When you have user input, it’s almost always possible that they’ll enter something
malicious. In the previous example, you could set your name to contain <script>
tags, causing XSS issues. You can sanitize or escape user input, so that when you put it
into your HTML, you aren’t doing anything unexpected.

 Depending on where you’re putting the user input, you’ll sanitize things differ-
ently. As a general principle, you’ll want to sanitize things as much as you can and
always keep the context in mind.

 If you’re putting user content inside HTML tags, for example, you’ll want to make
sure that it can’t define any HTML tags. You’ll want this kind of string

Hello, <script src="http://evil.com/hack.js"></script>world.

to become something like this:

Hello, <script src="http://evil.com/hack.js"></script>world.

By doing that, the <script> tags will be rendered useless.
 This kind of escaping (and more) is handled by most templating engines for you.

In EJS, simply use the default <%= myString %> and don’t use the <%- userString %>.
In Pug, this escaping is done by default. Unless you’re certain that you don’t want to
sanitize something, make sure to use the safe version whenever you’re dealing with
user strings.

 If you know that the user should be entering a URL, you’ll want to do more than
escaping; you’ll want to do your best to validate that something is a URL. You’ll also
want to call the built-in encodeURI function on a URL to make sure it’s safe.

My bank contacts

Bruce Lee

Francisco Bertrand

Hillary Clinton

Figure 10.2 A fictional list
of my bank contacts
Licensed to <miler.888@gmail.com>

181Protecting your users
 If you’re putting something inside an HTML attribute (like the href attribute of a
link), you’ll want to make sure your users can’t insert quotation marks, for example.
Unfortunately, there isn’t a one-size-fits-all solution for sanitizing user input; the way
you sanitize depends on the context. But you should always sanitize user input as
much as you can.

 You can also escape the input before you ever put it into your database. In the exam-
ples just used, we’re showing how to sanitize things whenever we’re displaying them. But
if you know that your users should enter homepages on their user profiles, it’s also
useful to sanitize that before you ever store it in the database. If I enter “hello, world”
as my homepage, the server should give an error. If I enter http://evanhahn.com as my
homepage, that should be allowed and put into the database. This can have security
benefits and UI benefits.

MITIGATING XSS WITH HTTP HEADERS

There’s one other way to help mitigate XSS, but it’s quite small, and that’s through the
use of HTTP headers. Once again, we’ll break out Helmet.

 There’s a simple security header called X-XSS-Protection. It can’t protect against
all kinds of XSS, but it can protect against what’s called reflected XSS. The best exam-
ple of reflected XSS is on an insecure search engine. On every search engine, when
you do a search, your query appears on the screen (usually at the top). If you search
for “candy,” the word candy will appear at the top, and it’ll be part of the URL:

https://mysearchengine.biz/search?query=candy

Now imagine you’re searching "<script src="http://evil.com/hack.js"></script>".
The URL might look something like this:

https://mysearchengine.biz/search?query=<script%20src="http://evil.com/
hack.js"></script>

Now, if this search engine puts that query into the HTML of the page, you’ve injected a
script into the page! If I send this URL to you and you click the link, I can take control
and do malicious things.

 The first step against this attack is to sanitize the user’s input. After that, you can set
the X-XSS-Protection header to keep some browsers from running that script should
you make a mistake. In Helmet, it’s just one line:

app.use(helmet.xssFilter());

Helmet also lets you set another header called Content-Security-Policy. Frankly,
Content-Security-Policy could be its own chapter. Check out the HTML5 Rocks
guide at www.html5rocks.com/en/tutorials/security/content-security-policy/ for more
information, and once you understand it, use Helmet’s csp middleware.

 Neither of these Helmet headers is anywhere near as important as sanitizing user
input, so do that first.
Licensed to <miler.888@gmail.com>

http://evanhahn.com
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

182 CHAPTER 10 Security
10.3.3 Cross-site request forgery (CSRF) prevention

Imagine that I’m logged into my bank. You want me to transfer a million dollars into
your account, but you aren’t logged in as me. (Another challenge: I don’t have a mil-
lion dollars.) How can you get me to send you the money?

THE ATTACK

On the bank site, there’s a “transfer money” form. On this form, I type the amount of
money and the recipient of the money and then hit Send. Behind the scenes, a POST
request is being made to a URL. The bank will make sure my cookies are correct, and
if they are, it’ll wire the money.

 You can make the POST request with the amount and the recipient, but you don’t
know my cookie and you can’t guess it; it’s a long string of characters. So what if you
could make me do the POST request? You’d do this with cross-site request forgery
(CSRF and sometimes XSRF).

 To pull off this CSRF attack, you’ll basically have me submit a form without know-
ing it. Imagine that you’ve made a form like the one in the next listing.

<h1>Transfer money</h1>
<form method="post" action="https://mybank.biz/transfermoney">
 <input name="recipient" value="YourUsername" type="text">
 <input name="amount" value="1000000" type="number">
 <input type="submit">
</form>

Let’s say that you put this in an HTML file on a page you controlled; maybe it’s
hacker.com/stealmoney.html. You could email me and say, “Click here to see some
photos of my cat!” If I clicked on it, I’d see something like figure 10.3:

 And if I saw that, I’d get suspicious. I wouldn’t click Submit and I’d close the win-
dow. But you can use JavaScript to automatically submit the form, as shown here.

Listing 10.7 A first draft of a hacker form

Figure 10.3 A
suspicious-looking
page that could
steal my money
Licensed to <miler.888@gmail.com>

183Protecting your users
<form method="post" action="https://mybank.biz/transfermoney">
 <!-- … -->
</form>

<script>
var formElement = document.querySelector("form");
formElement.submit();
</script>

If I get sent to this page, the form will immediately submit and I’ll be sent to my
bank, to a page that says, “Congratulations, you’ve just transferred a million dol-
lars.” I’ll probably panic and call my bank, and the authorities can likely sort some-
thing out.

 But this is progress—you’re now sending money to yourself. I won’t show it here,
but you can completely hide this from the victim. First, you make an <iframe> on your
page. You can then use the form’s target attribute, so that when the form submits, it
submits inside the iframe, rather than on the whole page. If you make this iframe
small or invisible (easy with CSS!), then I’ll never know I was hacked until I suddenly
had a million fewer dollars.

 My bank needs to protect against this. But how?

OVERVIEW OF PROTECTING AGAINST CSRF
My bank already checks cookies to make sure that I am who I say I am. A hacker can’t
perform CSRF attacks without getting me to do something. But once the bank knows it’s
me, how does it know that I meant to do something and wasn’t being tricked into
doing something?

 My bank decides this: if a user is submitting a POST request to mybank.biz/trans-
fermoney, they aren’t just doing that out of the blue. Before doing that POST, the user
will be on a page that’s asking where they want to transfer their money—perhaps the
URL is mybank.biz/transfermoney_form.

 So when the bank sends the HTML for mybank.biz/transfermoney_form, it’s going
to add a hidden element to the form: a completely random, unguessable string called
a token. The form might now look like the code in the next listing.

<h1>Transfer money</h1>
<form method="post" action="https://mybank.biz/transfermoney">
 <input name="_csrf" type="hidden"
 ➥ value="1dmkTNkhePMTB0DlGLhm">
 <input name="recipient" value="YourUsername" type="text">
 <input name="amount" value="1000000" type="number">
 <input type="submit">
</form>

Listing 10.8 Automatically submitting the form

Listing 10.9 Adding CSRF protections

Value of the
CSRF token will
be different for
every user, often
every time
Licensed to <miler.888@gmail.com>

184 CHAPTER 10 Security
You’ve probably used thousands of CSRF tokens while browsing the web, but you
haven’t seen them because they are hidden from you. (You’ll see CSRF tokens if you’re
like me and you enjoy viewing the HTML source of pages.)

 Now, when the user submits the form and sends the POST request, the bank will
make sure that the CSRF token sent is the same as the one the user just received. If it
is, the bank can be pretty sure that the user just came from the bank’s website and
therefore intended to send the money. If it’s not, the user might be being tricked—
don’t send the money.

 In short, you need to do two things:

1 Create a random CSRF token every time you’re asking users for data.
2 Validate that random token every time you deal with that data.

PROTECTING AGAINST CSRF IN EXPRESS

The Express team has a simple middleware that does those two tasks: csurf (https://
github.com/expressjs/csurf). The csurf middleware does two things:

■ It adds a method to the request object called req.csrfToken. You’ll send this token when-
ever you send a form, for example.

■ If the request is anything other than a GET, it looks for a parameter called _csrf to validate
the request, creating an error if it’s invalid. (Technically, it also skips HEAD and
OPTIONS requests, but those are much less common. There are also a few other
places the middleware will search for CSRF tokens; consult the documentation
for more.)

To install this middleware, run npm install csurf --save.
 The csurf middleware depends on some kind of session middleware and middle-

ware to parse request bodies. If you need CSRF protections, you probably have some
notion of users, which means that you’re probably already using these, but express-
session and body-parser do the job. Make sure you’re using those before you use
csurf. If you need an example, you can check out chapter 8’s code for app.js or look at
the CSRF example app at https://github.com/EvanHahn/Express.js-in-Action-code/
blob/master/Chapter_10/csrf-example/app.js.

 To use the middleware, simply require and use it. Once you’ve used the middle-
ware, you can grab the token when rendering a view, like in the following listing.

var csrf = require("csurf");

// …

app.use(csrf());

app.get("/", function(req, res) {
 res.render("myview", {
 csrfToken: req.csrfToken()
 });
});

Listing 10.10 Getting the CSRF token

Include a body parser
and session middleware
before this.
Licensed to <miler.888@gmail.com>

https://github.com/expressjs/csurf
https://github.com/EvanHahn/Express.js-in-Action-code/blob/master/Chapter_10/csrf-example/app.js
https://github.com/EvanHahn/Express.js-in-Action-code/blob/master/Chapter_10/csrf-example/app.js
https://github.com/expressjs/csurf

185Keeping your dependencies safe
Now, inside a view, you’ll output the csrfToken variable into a hidden input called
_csrf. It might look like the code in the next listing in an EJS template.

<form method="post" action="/submit">
 <input name="_csrf" value="<%= csrfToken %>" type="hidden">
 <! -- … -->
</form>

And that’s all. Once you’ve added the CSRF token to your forms, the csurf middleware
will take care of the rest.

 It’s not required, but you’ll probably want to have some kind of handler for failed
CSRF. You can define an error middleware that checks for a CSRF error, as shown in
the following listing.

// …

app.use(function(err, req, res, next) {
 if (err.code !== "EBADCSRFTOKEN") {
 next(err);
 return;
 }
 res.status(403);
 res.send("CSRF error.");
});

// …

This error handler will return "CSRF error" if there’s, well, a CSRF error. You might
want to customize this error page, and you might also want this to send you a mes-
sage—someone’s trying to hack one of your users!

 You can place this error handler wherever in your error stack you’d like. If you want
it to be the first error you catch, put it first. If you want it to be last, you can put it last.

10.4 Keeping your dependencies safe
Any Express application will depend on at least one third-party module: Express. If
the rest of this book has shown you anything, it’s that you’ll be depending on lots of
third-party modules. This has the huge advantage that you don’t have to write a lot
of boilerplate code, but it does come with one cost: you’re putting your trust in these
modules. What if the module creates a security problem?

 There are three big ways that you can keep your dependencies safe:

■ Audit the code yourself
■ Make sure you’re on the latest versions
■ Check against the Node Security Project

Listing 10.11 Showing the CSRF token in a form

Listing 10.12 Handling CSRF errors

Skips this
handler if it’s
not a CSRF error

Error code 403
is “Forbidden.”
Licensed to <miler.888@gmail.com>

186 CHAPTER 10 Security
10.4.1 Auditing the code

It might sound a bit crazy, but you can often easily audit the code of your dependen-
cies. Although some modules like Express have a relatively large surface area, many of
the modules you’ll install are only a few lines, and you can understand them quickly.
It’s a fantastic way to learn, too.

 Just as you might look through your own code for bugs or errors, you can look
through other people’s code for bugs and errors. If you spot them, you can avoid the
module. If you’re feeling generous, you can submit patches because these packages
are all open source.

 If you’ve already installed the module, you can find its source code in your
node_modules directory. You can almost always find modules on GitHub with a simple
search or from a link on the npm registry.

 It’s also worth checking a project’s overall status. If a module is old but works reli-
ably and has no open bugs, then it’s probably safe. But if it has lots of bug reports and
hasn’t been updated in a long time, that’s not a good sign!

10.4.2 Keeping your dependencies up to date

It’s almost always a good idea to have the latest versions of things. People tune perfor-
mance, fix bugs, and improve APIs. You could manually go through each of your
dependencies to find out which versions were out of date, or you could use a tool built
into npm: npm outdated.

 Let’s say that your project has Express 5.0.0 installed, but the latest version is 5.4.3
(which I’m sure will be out of date by the time you read this). In your project direc-
tory, run npm outdated --depth 0 and you’ll see output something like this:

Package Current Wanted Latest Location
express 5.0.0 5.4.3 5.4.3 express

If you have other outdated packages, this command will report those too. Go into
your package.json, update the versions, and run npm install to get the latest versions.
It’s a good idea to check for outdated packages frequently.

What’s that depth thing?
npm outdated --depth 0 will tell you all of the modules that are outdated that you’ve
installed. npm outdated without the depth flag tells you modules that are outdated,
even ones you didn’t directly install. For example, Express depends on a module
called cookie. If cookie gets updated but Express doesn’t update to the latest version
of cookie, then you’ll get a warning about cookie, even though it isn’t your fault.

There’s not much I can do if Express doesn’t update to the latest version (that’s
largely out of my control), other than update to the latest version of Express (which
is in my control). The --depth flag only shows actionable information, whereas leav-
ing it out gives you a bunch of information you can’t really use.
Licensed to <miler.888@gmail.com>

187Handling server crashes
Another side note: you’ll want to make sure that you’re on the latest version of Node,
too. Check https://nodejs.org and make sure you’re on the latest version.

10.4.3 Check against the Node Security Project

Sometimes, modules have security issues. Some nice folks set up the Node Security
Project, an ambitious undertaking to audit every module in the npm registry. If they
find an insecure module, they post an advisory at http://nodesecurity.io/advisories.

 The Node Security Project also comes with a command-line tool called nsp. It’s a
simple but powerful tool that scans your package.json for insecure dependencies (by
comparing them against their database).

 To install it, run npm install –g nsp to install the module globally. Now, in the
same directory as your package.json, type

nsp audit-package

Most of the time, you’ll get a nice message that tells you that your packages are known
to be secure. But sometimes, one of your dependencies (or, more often, one of your
dependencies’ dependencies) has a security hole.

 For example, Express depends on a module called serve-static; this is express.static,
the static file middleware. In early 2015, a vulnerability was found in serve-static. If
you’re using a version of Express that depended on serve-static, run nsp audit-package
and you’ll see something like this:

Name Installed Patched Vulnerable Dependency
serve-static 1.7.1 >=1.7.2 myproject > express

There are two important things here. The left column tells you the name of the prob-
lematic dependency. The right column shows you the chain of dependencies that
leads to the problem. In this example, your project (called myproject) is the first issue,
which depends on Express, which then depends on serve-static. This means that Express
needs to update in order to get the latest version of serve-static. If you depended on
serve-static directly, you’d only see your project name in the list, like this:

Name Installed Patched Vulnerable Dependency
serve-static 1.7.1 >=1.7.2 myproject

Note that modules can still be insecure; there are so many modules on npm that the
Node Security Project can’t possibly audit all of them. But it’s another helpful tool to
keep your apps secure.

10.5 Handling server crashes
I have bad news: your servers might crash at some point. There are loads of things that
can crash your servers: perhaps there’s a bug in your code and you’re referencing
an undefined variable; perhaps a hacker has found a way to crash your server with
Licensed to <miler.888@gmail.com>

https://nodejs.org
http://nodesecurity.io/advisories

188 CHAPTER 10 Security
malicious input; perhaps your servers have reached their capacities. Unfortunately,
these servers can get wildly complicated, and at some point, they might crash.

 And, although this chapter has tips to help keep your apps running smoothly, you
don’t want a crash to completely ruin your day. You should recover from crashes and
keep on chugging.

 There is a simple tool called Forever (https://github.com/foreverjs/forever) that
can help with this. Its name might be a hint: it keeps your apps running forever. The
important part: if your app crashes, Forever will try to restart it.

 To install Forever, run npm install forever --save. You’ve probably had an npm
start script in your package.json for a while, and you need to change it from the code
in the following listing to that in listing 10.14.

…
"scripts": {
 "start": "node app.js"
}
…

…
"scripts": {
 "start": "forever app.js"
}
…

And now your server will restart if it crashes!

NOTE You can see a simple code example of this in action at the book’s
source code repository at https://github.com/EvanHahn/Express.js-in-Action-
code/tree/master/Chapter_10/forever-example.

10.6 Various little tricks
We’ve covered most of the big topics like cross-site scripting and HTTPS. There are a
few other tricks that you can employ to make your Express applications even more
secure. The topics in this section are hardly as essential as the earlier ones, but they’re
quick and easy and can lower the number of places that you can be attacked.

10.6.1 No Express here

If a hacker wants to break into your site, they have a lot of things to try. If they know
that your site is powered by Express and they know that Express or Node has some
kind of security flaw, they can try to exploit it. It’d be better to leave hackers in the
dark about this!

Listing 10.13 A classic npm start script

Listing 10.14 npm start with Forever
Licensed to <miler.888@gmail.com>

https://github.com/foreverjs/forever
https://github.com/EvanHahn/Express.js-in-Action-code/tree/master/Chapter_10/forever-example
https://github.com/EvanHahn/Express.js-in-Action-code/tree/master/Chapter_10/forever-example

189Various little tricks
 By default, however, Express publicizes itself. In every request, there’s an HTTP
header that identifies your site as powered by Express. X-Powered-By: Express is sent
with every request, by default. You can easily disable it with a setting:

app.disable("x-powered-by");

Disabling the x-powered-by option disables the setting of the header. Disabling this
will make it a little harder for hackers. It’ll hardly make you invincible—there are
plenty of other avenues for attack—but it can help a little, and every little bit helps.

10.6.2 Preventing clickjacking

I think clickjacking is quite clever. It’s relatively easy to prevent, but I almost feel guilty
for doing so. It’s such a clever trick.

 Imagine I’m a hacker, and I want to find out information from your private social
networking profile. I’d love it if you would just make your profile public. It’d be so
easy, if I could get you to click the big button shown in figure 10.4.

Clickjacking takes advantage of browser frames—the ability to embed one page in
another—to make this happen. I could send you a link to an innocent-looking page,
which might look something like figure 10.5.

MySocialNetwork

Mustachio McBeardy
From Melbourne, Australia
Born June 10, 1925

Favorite color: green

Click to make profile public

Figure 10.4 An example page for a social network

Ada Lovelace’s
Cool Page

Click here to enter my page

Figure 10.5 An innocent-looking
page that’s concealing a
clickjacking attack
Licensed to <miler.888@gmail.com>

190 CHAPTER 10 Security
But in reality, this innocent-looking page is concealing the social network page! There’s
an <iframe> of the social network site, and it’s invisible. It’s positioned just right, so
that when you click “Click here to enter my page,” you’re actually clicking “Click to
make profile public,” as figure 10.6 reveals.

 I don’t know about you, but I think that’s quite clever. Unfortunately for hackers,
it’s quite easily prevented.

 Most browsers (and all modern ones) listen for a header called X-Frame-Options.
If it’s loading a frame or iframe and that page sends a restrictive X-Frame-Options,
the browser won’t load the frame any longer.

 X-Frame-Options has three options. DENY keeps anyone from putting your site in a
frame, period. SAMEORIGIN keeps anyone else from putting your site in a frame, but
your own site is allowed. You can also let one other site through with the ALLOW-FROM
option. I’d recommend the SAMEORIGIN or DENY options. As before, if you’re using
Helmet, you can set them quite easily, as shown in the following listing.

app.use(helmet.frameguard("sameorigin"));
// or …
app.use(helmet.frameguard("deny"));

This Helmet middleware will set X-Frame-Options so you don’t have to worry about
your pages being susceptible to clickjacking attacks.

10.6.3 Keeping Adobe products out of your site

Adobe products like Flash Player and Reader can make cross-origin web requests. As a
result, a Flash file could make requests to your server. If another website serves a
malicious Flash file, users of that site could make arbitrary requests to your Express

Listing 10.15 Keeping your app out of frames

MySocialNetwork

Mustachio McBeardy
From Melbourne, Australia
Born June 10, 1925

Favorite color: green

Click here to enter my pageClick to make profile public

Ada Lovelace’s
Cool Page

Figure 10.6 Not so
innocent now, is it?
Licensed to <miler.888@gmail.com>

191Various little tricks
application (likely unknowingly). This could cause them to hammer your server with
requests or to load resources you don’t intend them to.

 This is easily preventable by adding a file at the root of your site called crossdo-
main.xml. When an Adobe product is going to load a file off of your domain, it will
first check the crossdomain.xml file to make sure your domain allows it. As the admin-
istrator, you can define this XML file to keep certain Flash users in or out of your site.
It’s likely, however, that you don’t want any Flash users on your page. In that case,
make sure you’re serving this XML content at the root of your site (at /crossdo-
main.xml), as the next listing shows.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM

➥ "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <site-control permitted-cross-domain-policies="none">
</cross-domain-policy>

This prevents any Flash users from loading content off of your site, unless they come
from your domain. If you’re interested in changing this policy, take a look at the spec
at https://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html.

 You can place the restrictive crossdomain.xml file into a directory for your static
files so that it’s served up when requested.

10.6.4 Don’t let browsers infer the file type

Imagine a user has uploaded a plain-text file to your server called file.txt. Your server
serves this with a text/plain content type, because it’s plain text. So far, this is simple.
But what if file.txt contains something like the script in the next listing?

function stealUserData() {
 // something evil in here …
}
stealUserData();

Even though you’re serving this file as plain text, this looks like JavaScript, and some
browsers will try to sniff the file type. That means that you can still run that file with
<script src="file.txt"></script>. Many browsers will allow file.txt to be run even
if the content type isn’t for JavaScript!

 This example extends further if file.txt looks like HTML and the browser interprets
it as HTML. That HTML page can contain malicious JavaScript, which could do lots of
bad things!

Listing 10.16 The most restrictive crossdomain.xml

Listing 10.17 A malicious script that could be stored as plain text
Licensed to <miler.888@gmail.com>

https://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html

192 CHAPTER 10 Security
 Luckily, you can fix this with a single HTTP header. You can set the X-Content-
Type-Options header to its only option, nosniff. Helmet comes with noSniff mid-
dleware, and you can use it like this:

app.use(helmet.noSniff());

Nice that one HTTP header can fix this!

10.7 Summary
■ Thinking like a hacker will help you spot security holes.
■ Using a syntax checker like JSHint can help you spot bugs in your code.
■ Parsing query strings in Express has a few pitfalls. Make sure you know what

variable types your parameters could be.
■ HTTPS should be used instead of HTTP.
■ Cross-site scripting, cross-site request forgery, and man-in-the-middle attacks

can be mitigated. Never trusting user input and verifying things each step of the
way can help secure you.

■ Crashing servers is a given. Forever is one tool that you can use to make sure
your application restarts after a failure.

■ Auditing your third-party code using the Node Security Project (and common
sense!).
Licensed to <miler.888@gmail.com>

Deployment:
assets and Heroku
It’s time to put your applications into the real world. The first part of this chapter
will discuss assets. If you’re building any sort of website, it’s very likely that you’ll be
serving both CSS and JavaScript. It’s common to concatenate and minify these
assets for performance. It’s also common to code in languages that compile to CSS
(like SASS and LESS), just as it’s common to code in languages that transpile to
JavaScript (like CoffeeScript or TypeScript), or to concatenate and minify Java-
Script. Debates quickly turn into flame wars when talking about things like this;
should you use LESS or SASS? Is CoffeeScript a good thing? Whichever you choose,
I’ll show you how to use a few of these tools to package up your assets for the web.

This chapter covers
■ LESS for improving your CSS
■ Browserify for packaging JavaScript, letting you

share code between client and server
■ connect-assets as an alternative to Grunt for

compiling and serving CSS and JavaScript
■ Deploying your applications to Heroku for the

real internet
193

Licensed to <miler.888@gmail.com>

194 CHAPTER 11 Deployment: assets and Heroku
 The rest of this chapter will show you how to build your Express applications and
then put them online. There are lots of deployment options, but you’ll use one that’s
easy and free to try: Heroku. You’ll add a few small things to your app and deploy an
Express app into the wild.

 After this chapter, you’ll

■ Develop CSS with more ease using the LESS preprocessor
■ Use Browserify to use require in the browser, just like in Node
■ Minify your assets to make the smallest files possible
■ Use Grunt to run this compilation and much more
■ Use Express middleware (connect-assets) as an alternative to this Grunt workflow
■ Know how to deploy Express applications to the web with Heroku

11.1 LESS, a more pleasant way to write CSS
Harken back to chapter 1, where we talked about the motivations for Express. In
short, we said that Node.js is powerful but its syntax can be a little cumbersome and it
can be a bit limited. That’s why Express was made—it doesn’t fundamentally change
Node; it smooths it out a bit.

 In that way, LESS and CSS are a lot like Express and Node. In short, CSS is a power-
ful layout tool but its syntax can be cumbersome and limited. That’s why LESS was
made—it doesn’t fundamentally change CSS; it smooths it out a bit.

 CSS is a powerful tool for laying out web pages, but it’s missing a number of fea-
tures that people wanted. For example, developers want to reduce repetition in their
code with constant variables instead of hard-coded values; variables are present in
LESS but not CSS. LESS extends CSS and adds a number of powerful features.

 Unlike Express, LESS is actually its own language. That means that it has to be com-
piled down into CSS in order to be used by web browsers—browsers don’t speak LESS,
they speak CSS.

 You’ll see two ways to compile LESS to CSS in Express applications. For now, while
you’re trying LESS, visit http://less2css.org/. On the left side of the page, you’ll be
able to type LESS code, and compiled CSS will appear on the right, as shown in fig-
ure 11.1.

 We’ll go through a few examples in the following sections and you can try them
out on that website. When it’s time to integrate LESS into your Express apps, we’ll
move to a better, automated method.

 LESS is feature-filled, but it has five major points:

■ Variables. Allow you to define things like colors once and use them everywhere.
■ Functions. Allow you to manipulate variables (darkening a color by 10%, for

example).
■ Nesting selectors. Allow you to structure your stylesheet more like your HTML and

reduce repetition.
Licensed to <miler.888@gmail.com>

http://less2css.org/

195LESS, a more pleasant way to write CSS
■ Mixins. Allow you to define reusable components and use them in various
selectors.

■ Includes. Allow you to split your stylesheets into multiple files (much like require
in Node).

We’ll do a very quick run-through of these major features. LESS is pretty complicated
and we won’t talk about every detail. If you’re interested in the nitty-gritty features of
LESS, look at its documentation at http://lesscss.org/.

11.1.1 Variables

CSS doesn’t have variables. If your website’s link color is #29A1A4, for example, and
you decide you want to change it to #454545, you’d have to search for it everywhere in
your CSS file and change it. If you want to experiment with a color that’s used in many
different places, you’ll be doing find-replace, which can lead to reliability issues. It’s
also unclear to other developers which color is which; where is that color used in vari-
ous places?

 LESS added variables to CSS, allowing you to solve this kind of problem. Let’s say
you want to define your site’s primary color as #FF9900. In LESS, you might do some-
thing like what’s shown in the following listing.

Figure 11.1 less2css.org in action
Licensed to <miler.888@gmail.com>

http://lesscss.org/

196 CHAPTER 11 Deployment: assets and Heroku
@primary-color: #ff9900;

.logo {
 color: @primary-color;
 font-weight: bold;
}

a {
 color: @primary-color;
}

If you run the LESS code in listing 11.1 through a LESS compiler (like the one at
http://less2css.org/), the CSS shown in the next listing will be produced.

.logo {
 color: #ff9900;
 font-weight: bold;
}
a {
 color: #ff9900;
}

As you can see, the variable is being inserted into the resulting CSS. Now, if you want
to change the primary color of your site, you only have to do it in one place: the vari-
able at the top.

 You might also notice that LESS looks much like CSS, and that’s intentional—it’s a
strict superset of the language. That means that any valid CSS is valid LESS (but not the
other way around). Thus you can easily import your existing CSS stylesheets into LESS
and everything will work.

11.1.2 Functions

LESS also has functions, which allow you to manipulate variables and values just like
you could in a programming language like JavaScript. Like a typical programming lan-
guage, there are a number of built-in functions that can help you out. Unlike a typical
programming language, however, these functions are all built into the language. You
can’t define your own; you’ll have to use another feature called mixins, which we’ll
talk about in the next section.

 LESS has a number of functions that you can use to manipulate colors. For exam-
ple, imagine your links (your <a> tags) have a base color. When you hover over them,
they should get lighter. When you click them, they should get darker. In LESS, func-
tions and variables make this easy, as the next listing shows.

Listing 11.1 Variables in LESS

Listing 11.2 The compiled CSS from listing 11.1

Defines the variable
primary-color

Uses that
variable in
several places

Notice that the
variable is being
inserted here.
Licensed to <miler.888@gmail.com>

http://less2css.org/

197LESS, a more pleasant way to write CSS
@link-color: #0000ff;

a {
 color: @link-color;
}
a:hover {
 color: lighten(@link-color, 25%);
}
a:active {
 color: darken(@link-color, 20%);
}

After you compile this LESS into CSS, you’ll get something like the following listing.

a {
 color: #0000ff;
}
a:hover {
 color: #8080ff;
}
a:active {
 color: #000099;
}

As you can see, LESS makes it easier to lighten and darken colors. Yes, you could have
written that CSS yourself, but choosing the lightened and darkened colors would
have been a bit of a hassle.

 A slew of other functions are built into LESS. http://lesscss.org/functions/ lists
them all.

11.1.3 Mixins

Perhaps you’re reading this section wishing you could define your own functions; why
does LESS get all of the power? Enter mixins, a way of defining reusable CSS declara-
tions that you can use throughout your stylesheets.

 Perhaps the most common example is with vendor prefixing. If you want to use
the CSS border-radius property, you have to prefix it to make sure it works in
Chrome, Firefox, Internet Explorer, Safari, and the like. You’ve probably seen some-
thing like this:

.my-element {
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 -ms-border-radius: 5px;
 border-radius: 5px;
}

Listing 11.3 Using functions to lighten and darken colors

Listing 11.4 The compiled CSS from listing 11.3

Uses the link-color
variable that you
defined previously

Lightens the link
color by 25%

Darkens the link
color by 20%

Colors are being
manipulated to be
lighter and darker.
Licensed to <miler.888@gmail.com>

http://lesscss.org/functions/

198 CHAPTER 11 Deployment: assets and Heroku
In CSS, if you want to use border-radius and have it work on all browsers, you’ll need
the vendor prefixes. You’ll have to write all of those every time you use border-radius.
This can get tedious and is error-prone.

 In LESS, rather than define the border-radius and then make several vendor-
prefixed copies, you can define a mixin, or a reusable component that you can use
in multiple declarations, as shown in the next listing. They look much like functions in
other programming languages.

.border-radius(@radius) {
 -webkit-border-radius: @radius;
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

.my-element {
 .border-radius(5px);
}
.my-other-element {
 .border-radius(10px);
}

Now, if you run that LESS through a compiler, it produces the CSS in the following listing.

.my-element {
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 -ms-border-radius: 5px;
 border-radius: 5px;
}
.my-other-element {
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 -ms-border-radius: 10px;
 border-radius: 10px;
}

As you can see, the mixin is expanded into the tedious vendor-prefixed declarations
so that you don’t have to write them every time.

11.1.4 Nesting

In HTML, your elements are nested. Everything goes inside the <html> tag, and then
your content goes into the <body> tag. Inside the body, you might have a <header>
with a <nav> for navigation. Your CSS doesn’t exactly mirror this; if you wanted to style

Listing 11.5 Mixins in LESS

Listing 11.6 The compiled CSS from listing 11.5

Defines the
border-radius
mixin

Uses your border-
radius mixin in a
couple of elements
Licensed to <miler.888@gmail.com>

199LESS, a more pleasant way to write CSS
your header and the navigation inside of your header, you might write CSS like this
next listing.

header {
 background-color: blue;
}
header nav {
 color: yellow;
}

In LESS, listing 11.7 would be improved to this listing.

header {
 background-color: blue;
 nav {
 color: yellow;
 }
}

LESS improves CSS to allow for nested rulesets. This means that your code will be
shorter, more readable, and a better mirror of your HTML.

NESTING THE PARENT SELECTORS

Nested rulesets can refer to their parent element. This is useful in lots of places, and a
good example is links and their hover states. You might have a selector for a, a:visited,
a:hover, and a:active. In CSS, you might do this with four separate selectors. In
LESS, you’ll define an outer selector and three inner selectors, one for each link state.
It might look something like this.

a {
 color: #000099;
 &:visited {
 color: #330099;
 }
 &:hover {
 color: #0000ff;
 }
 &:active {
 color: #ff0099;
 }
}

LESS nesting can do simple things like nesting your selectors to match your HTML, but
it can also nest selectors in relation to the parent selectors.

Listing 11.7 CSS example with no nesting

Listing 11.8 A simple LESS nesting example

Listing 11.9 Referring to parent selectors in LESS

The styling for the nav is
inside another selector.

Uses the & sign
to refer to the
parent selector
Licensed to <miler.888@gmail.com>

200 CHAPTER 11 Deployment: assets and Heroku
11.1.5 Includes

As your site gets bigger and bigger, you’ll start to have more and more styles. In CSS,
you can break your code into multiple files, but this incurs the performance penalty of
multiple HTTP requests.

 LESS allows you to split your styles into multiple files, which are all concatenated
into one CSS file at compilation time, saving performance. This means that developers
can split their variables and mixins into separate files as needed, making for more
modular code. You could also make one LESS file for the homepage, one for the user
profiles page, and so on.

 The syntax is quite simple:

@import "other-less-file";

11.1.6 Alternatives to LESS

At this point in the book, it should come as no surprise: there’s more than one way to
do CSS preprocessing. The elephant in the room is LESS’s biggest “rival,” Sass. Sass is
very similar to LESS; both have variables, mixins, nested selectors, includes, and inte-
gration with Express. As far as the languages go, they’re pretty similar. Sass isn’t origi-
nally a Node project, but it’s very popular and has done a solid job integrating itself
into the Node world. You can check it out at http://sass-lang.com/.

 Most readers will want to use either LESS or Sass. Although we’ll use LESS in this
book, you can usually substitute the word “LESS” for the word “Sass” and it will be the
same. LESS and Sass vary slightly in syntax, but they’re largely the same conceptually
and in how you integrate them with Express.

 There are smaller-time CSS preprocessors that aim to fundamentally change CSS
in one way or another. Stylus makes CSS’s syntax a lot nicer and Roole adds a num-
ber of powerful features, and although they are both great, they aren’t as popular as
LESS or Sass.

 Other CSS preprocessors like Myth and cssnext take a different angle. Rather than
try to make a new language that compiles to CSS, they compile upcoming versions of
CSS to current-day CSS. For example, the next version of CSS has variables, so these
preprocessors compile this new syntax into current-day CSS.

11.2 Using Browserify to require modules in the browser
In short, Browserify (http://browserify.org/) is a tool for packaging JavaScript that
allows you to use the require function just like you do in Node. And I love Browserify.
I want to get that out of the way. Freakin’ love this thing.

 I once heard someone describe browser-based programming as hostile. I love mak-
ing client-side projects, but I must admit that there are a lot of potholes in the road:
browser inconsistencies, no reliable module system, an overwhelming number of
varying-quality packages, no real choice of programming language ... the list goes on.

Imports other-less-file.less
in the same folder
Licensed to <miler.888@gmail.com>

http://sass-lang.com/
http://browserify.org/

201Using Browserify to require modules in the browser
Sometimes it’s great, but sometimes it sucks! Browserify solves the module problem in
a clever way: it lets you require modules exactly like you would in Node (in contrast to
things like RequireJS, which are asynchronous and require an ugly callback). This is
powerful for a couple of reasons.

 This lets you easily define modules. If Browserify sees that evan.js requires cake.js
and burrito.js, it’ll package up cake.js and burrito.js and concatenate them into the
compiled output file.

 Second, it’s almost completely consistent with Node modules. This is huge—both
Node-based and browser-based JavaScript can require Node modules, letting you share
code between server and client with no extra work. You can even require most native
Node modules in the browser, and many Node-isms like __dirname are resolved.

 I could write sonnets about Browserify. This thing is truly great. Let me show it to you.

11.2.1 A simple Browserify example

Let’s say you want to write a web page that generates a random color and sets the back-
ground to that color. Maybe you want to be inspired for the next great color scheme.

 You’re going to use an npm module called random-color (at https://www.npmjs
.com/package/random-color), which generates a random RGB color string. If you
check out the source code for this module, you’ll see that it knows nothing about the
browser—it’s only designed to work with Node’s module system.

 Make a new folder to build this. You’ll make a package.json that looks something
like this next listing (your package versions may vary).

{
 "private": true,
 "scripts": {
 "build-my-js": "browserify main.js -o compiled.js"
 },
 "dependencies": {
 "browserify": "^7.0.0",
 "random-color": "^0.0.1"
 }
}

Run npm install and then create a file called main.js. Put the following inside.

var randomColor = require("random-color");
document.body.style.background = randomColor();

Note that this file uses the require statement, but it’s made for the browser, which
doesn’t have that natively. Get ready for your little mind to be blown!

Listing 11.10 package.json for your simple Browserify example

Listing 11.11 main.js for your simple Browserify example
Licensed to <miler.888@gmail.com>

https://www.npmjs.org/package/random-color
https://www.npmjs.org/package/random-color

202 CHAPTER 11 Deployment: assets and Heroku
 Finally, define a simple HTML file in the same directory with the following contents
(it doesn’t matter what you call it, so long as it ends in .html).

<!DOCTYPE html>
<html>
<body>
 <script src="compiled.js"></script>
</body>
</html>

Now, if you save all that and run npm run build-my-js, Browserify will compile main.js
into a new file, compiled.js. Open the HTML file you saved to see a web page that gen-
erates random colors every time you refresh!

 You can open compiled.js to see that your code is there, as is the random-color
module. The code will be ugly, but here’s what it looks like:

(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof
require=="function"&&require;if(!u&&a)return a(o,!0);if(i) return i(o,!0);var
f=new Error("Cannot find module '"+o+
"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={
exports:{}};t[o][0].call(l.exports,function(e){var n=t[o] [1][e];return
s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof
require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]); return
s})({1:[function(require,module,exports){ var randomColor = require("random-
color"); document.body.style.backgroundColor = randomColor();

},{"random-color":2}],2:[function(require,module,exports){
var random = require("rnd");

module.exports = color;

function color (max, min) {
 max || (max = 255);
 return 'rgb(' + random(max, min) + ', ' + random(max, min) + ', ' +

random(max, min) + ')';
}

},{"rnd":3}],3:[function(require,module,exports){
module.exports = random;

function random (max, min) {
 max || (max = 999999999999);
 min || (min = 0);

 return min + Math.floor(Math.random() * (max - min));
}

},{}]},{},[1]);

They’re both wrapped in a bit of Browserify stuff to fake Node’s module system, but
they’re there ... and most importantly, they work! You can now require Node modules
in the browser.

 Browserify is so great. Love it.

Listing 11.12 HTML file for your simple Browserify example
Licensed to <miler.888@gmail.com>

203Using Grunt to compile, minify, and more
NOTE Although you can require a number of utility libraries (even the built-
in ones), there are some things you can’t fake in the browser and therefore
can’t use in Browserify. For example, you can’t run a web server in the
browser, so some of the http module is off limits. But many things like util or
modules you write are totally fair game!

As you write your code with Browserify, you’ll want a nicer way to build this than hav-
ing to run the build command every single time. Let’s check out a tool that helps you
use Browserify, LESS, and much, much more.

11.3 Using Grunt to compile, minify, and more
We’ve taken a look at LESS and Browserify, but we haven’t yet found an elegant way to
wire them into our Express apps.

 We’ll look at two ways to handle this, with Grunt and connect-assets. Grunt
(http://gruntjs.com/) calls itself “The JavaScript Task Runner,” which is exactly what
it sounds like: it runs tasks. If you’ve ever used Make or Rake, Grunt will seem familiar.

 Grunt defines a framework onto which you define tasks. Like Express, Grunt is a
minimal framework. It can’t do much alone; you’ll need to install and configure other
tasks for Grunt to run. These tasks include compiling CoffeeScript or LESS or SASS,
concatenating JavaScript and CSS, running tests, and plenty more. You can find a full
list of tasks at http://gruntjs.com/plugins, but you’ll be using four today: compiling
and concatenating JavaScript with Browserify, compiling LESS into CSS, minifying Java-
Script and CSS, and using watch to keep you from typing the same commands over
and over again.

 Let’s start by installing Grunt.

11.3.1 Installing Grunt

These instructions will deviate a bit from the official Grunt instructions. The docu-
mentation will tell you to install Grunt globally, but I believe that you should install
everything locally if you can. This allows you to install multiple versions of Grunt on
your system and doesn’t pollute your globally installed packages. We’ll talk more
about these best practices in chapter 12.

 Every project has a package.json. If you want to add Grunt to a project, you’ll
want to define a new script so that you can run the local Grunt, as shown in the fol-
lowing listing.

…
"scripts": {
 "grunt": "grunt"
},
…

Listing 11.13 A script for running the local Grunt
Licensed to <miler.888@gmail.com>

http://gruntjs.com/
http://gruntjs.com/plugins

204 CHAPTER 11 Deployment: assets and Heroku
If you’d like to follow along with these examples, you can make a new project with a
barebones package.json like this one.

{
 "private": true,
 "scripts": {
 "grunt": "grunt"
 }
}

Grunt isn’t set up yet, but when it is, this allows you to type npm run grunt to run the
local Grunt.

 Next, you’ll want to npm install grunt --save-dev and npm install grunt-cli
--save-dev (or just npm install grunt grunt-cli --save-dev) to save Grunt and its
command-line tool as local dependencies.

 Then, you’ll want to create something called a Gruntfile, which Grunt examines to
figure out what it should do. The Gruntfile lives at the root of your project (in the
same folder as your package.json) and is called Gruntfile.js.

 The next listing is a Hello World Gruntfile. When you run Grunt, it will look at this
Gruntfile, find the appropriate task, and run the code inside.

module.exports = function(grunt) {

 grunt.registerTask("default", "Say Hello World.", function() {
 grunt.log.write("Hello world!");
 });

};

To try this out, type npm run grunt into your terminal. You should see the follow-
ing output:

Running "default" task
Hello, world!
Done, without errors.
Grunt is now running the "hello world" task!

Unfortunately, Hello World isn’t of much use to you. Let’s look at more useful tasks
you can define. If you’d like to follow along, look at this book’s code samples at
https://github.com/EvanHahn/Express.js-in-Action-code/tree/master/Chapter_11/
grunt-examples.

11.3.2 Compiling LESS with Grunt

When you learned about LESS earlier in this chapter, I recommended a website that
compiles your code live, in front of you. That’s great for learning and it’s useful to

Listing 11.14 A barebones package.json for these examples

Listing 11.15 A skeleton Gruntfile
Licensed to <miler.888@gmail.com>

https://github.com/EvanHahn/Express.js-in-Action-code/tree/master/Chapter_11/grunt-examples

205Using Grunt to compile, minify, and more
make sure your code is being compiled correctly, but it’s hardly an automated solu-
tion. You don’t want to have to put all of your code into a website, copy-paste the
resulting CSS, and copy it into a CSS file! Let’s make Grunt do it. (If you’re not using
LESS, there are other Grunt tasks for your favorite preprocessor. Just search the Grunt
plugins page at http://gruntjs.com/plugins.)

 Start by writing a simple LESS file, shown in the next listing, which you’ll compile
to CSS with Grunt.

article {
 display: block;
 h1 {
 font-size: 16pt;
 color: #900;
 }
 p {
 line-height: 1.5em;
 }
}

That should translate to the CSS shown in the next listing.

article {
 display: block;
}
article h1 {
 font-size: 16pt;
 color: #900;
}
article p {
 line-height: 1.5em;
}

And if you minify that CSS, it should look like this listing.

article{display: block}article h1{font-size:16pt; color:#900}article p{line-
height:1.5em}

You can use a third-party LESS task for Grunt to get there! Start by installing this Grunt
LESS task with npm install grunt-contrib-less --save-dev. Next, add the following
to your Gruntfile.

Listing 11.16 A simple LESS file (in my_css/main.less)

Listing 11.17 Listing 11.16 compiled to CSS

Listing 11.18 minified
Licensed to <miler.888@gmail.com>

http://gruntjs.com/plugins

206 CHAPTER 11 Deployment: assets and Heroku

De
conf

L

module.exports = function(grunt) {

 grunt.initConfig({
 less: {
 main: {
 options: {
 paths: ["my_css"]
 },
 files: {
 "tmp/build/main.css": "my_css/main.less"
 }
 }
 }
 });

 grunt.loadNpmTasks("grunt-contrib-less");

 grunt.registerTask("default", ["less"]);

};

Now, when you run Grunt with npm run grunt, your LESS will be compiled into tmp/
build/main.css. After doing that, you’ll need to make sure to serve that file.

SERVING THESE COMPILED ASSETS

Now that you’ve compiled something, you need to serve it to your visitors! You’ll use
Express’s static middleware to do that. Add tmp/build as part of your middleware
stack, as shown in the next listing.

var express = require("express");
var path = require("path");

var app = express();

app.use(express.static(path.resolve(__dirname, "public")));
app.use(express.static(path.resolve(__dirname, "tmp/build")));

app.listen(3000, function() {
 console.log("App started on port 3000.");
});

Now, you can serve files from public and compiled files from tmp/build.

NOTE You likely don’t want to commit compiled files into your repository, so
you have to store them into a directory that you’ll later ignore with version
control. If you’re using Git, add tmp to your .gitignore to make sure that
your compiled assets aren’t put into version control. Some people do like to
commit these, so do what’s right for you.

Listing 11.19 A Gruntfile with LESS

Listing 11.20 Static middleware with compiled files

Configures settings for
each of your Grunt tasks

fines the
iguration
for your

ESS tasks
Tells the Grunt LESS
plugin to compile
my_css/main.less into
tmp/build/main.css

Loads the Grunt
LESS plugin

Tells Grunt to run the LESS
compilation task when you run
grunt at the command line
Licensed to <miler.888@gmail.com>

207Using Grunt to compile, minify, and more
11.3.3 Using Browserify with Grunt

Browserify, in its wisdom, has Grunt integration, so you can automate the process of com-
piling your client-side JavaScript. Browserify ... what an amazing piece of technology.

 Start by installing grunt-browserify, a Grunt task for Browserify. Install it by running
npm install grunt-browserify --save-dev, and then fill in Gruntfile.js with this listing.

module.exports = function(grunt) {

 grunt.initConfig({
 less: { /* … */ },
 browserify: {
 client: {
 src: ["my_javascripts/main.js"],
 dest: "tmp/build/main.js",
 }
 }
 });

 grunt.loadNpmTasks("grunt-contrib-less");
 grunt.loadNpmTasks("grunt-browserify");

 grunt.registerTask("default", ["browserify", "less"]);
};

Now, when you run Grunt with npm run grunt, this will compile main.js in a folder
called my_javascripts into tmp/build/main.js. If you’ve followed the steps from the
LESS guide shown previously, this should already be served!

11.3.4 Minifying the JavaScript with Grunt

Unfortunately, Browserify doesn’t minify your JavaScript for you, its only blemish. You
should do that to reduce file sizes and load times as best you can.

 UglifyJS is a popular JavaScript minifier that crushes your code down to tiny sizes.
You’ll be using a Grunt task that takes advantage of UglifyJS to minify your already
Browserified code, called grunt-contrib-uglify. You can read more about it at
https://www.npmjs.com/package/grunt-contrib-uglify.

 Install the Grunt task with npm install grunt-contrib-uglify --save-dev. Then,
add the following code to your Gruntfile.

module.exports = function(grunt) {

 grunt.initConfig({
 less: { /* … */ },
 browserify: { /* … */ },

Listing 11.21 A Gruntfile with Browserify

Listing 11.22 A Gruntfile with Browserify, LESS, and Uglify

Starts configuring
Browserify

Compiles main.js file
from my_javascripts
into tmp/build/main.js

Loads
the grunt-
browserify
task When you run

grunt at the
command line,
runs Browserify
and LESS
Licensed to <miler.888@gmail.com>

https://www.npmjs.com/package/grunt-contrib-uglify

208 CHAPTER 11 Deployment: assets and Heroku
 uglify: {
 myApp: {
 files: {
 "tmp/build/main.min.js": ["tmp/build/main.js"]
 }
 }
 }
 });

 grunt.loadNpmTasks("grunt-browserify");
 grunt.loadNpmTasks("grunt-contrib-less");
 grunt.loadNpmTasks("grunt-contrib-uglify");

 grunt.registerTask("default", ["browserify", "less"]);
 grunt.registerTask("build", ["browserify", "less", "uglify"]);

};

npm run grunt won’t do anything different than it did before—it’ll run the default
task, which in turns runs the Browserify and LESS tasks. But when you run npm run
grunt build, you’ll run both the Browserify task and the Uglify task. Now your Java-
Script will be minified!

11.3.5 Using Grunt watch

While you’re developing, you don’t want to have to run npm run grunt every time you
edit a file. There’s a Grunt task that watches your files and reruns any Grunt tasks
when a change occurs. Enter grunt-contrib-watch. Let’s use it to autocompile any
CSS and JavaScript whenever they change.

 Start by installing the task with npm install grunt-contrib-watch --save-dev,
and then add stuff to your Gruntfile as in the next listing.

module.exports = function(grunt) {

 grunt.initConfig({
 less: { /* … */ },
 browserify: { /* … */ },
 uglify: { /* … */ },
 watch: {
 scripts: {
 files: ["**/*.js"],
 tasks: ["browserify"]
 },
 styles: {
 files: ["**/*.less"],
 tasks: ["less"]
 }
 }
 });

Listing 11.23 A Gruntfile with watching added

Compiles your
compiled JavaScript
into a minified
version

Runs when
you type
npmrungrunt
build

Tells the Grunt watch task to
run the Browserify task any
time a .js file changes

Tells the Grunt watch task
to run the LESS task any
time a .less file changes
Licensed to <miler.888@gmail.com>

209Using connect-assets to compile LESS and CoffeeScript
 grunt.loadNpmTasks("grunt-browserify");
 grunt.loadNpmTasks("grunt-contrib-less");
 grunt.loadNpmTasks("grunt-contrib-uglify");
 grunt.loadNpmTasks("grunt-contrib-watch");

 grunt.registerTask("default", ["browserify", "less"]);
 grunt.registerTask("build", ["browserify", "less", "uglify"]);
};

In this example, you specify all files to watch and tasks to run when they change—it’s
that simple. Now, when you run npm run grunt watch, Grunt will watch your files and
compile your CSS/JavaScript as needed. If you change a file with the .less file exten-
sion, the LESS task will run (but no other tasks will); this is because you’ve configured
.less files to trigger that task. I find this super useful for development and strongly rec-
ommend it.

11.3.6 Other helpful Grunt tasks

We’ve looked at a few Grunt tasks here, but there are loads more. You can find the full
list on Grunt’s website at http://gruntjs.com/plugins, but here are a few that might be
helpful at some point:

■ grunt-contrib-sass is the Sass version of the LESS plugin you used. If you’d
rather use Sass or SCSS, give this a look.

■ grunt-contrib-requirejs uses the Require.js module system instead of Brow-
serify. If that sounds better to you, you can use it instead.

■ grunt-contrib-concat concatenates files, which is a low-tech but popular solu-
tion for lots of problems.

■ grunt-contrib-imagemin minifies images (like JPEGs and PNGs). If you want to
save bandwidth, this is a good tool.

■ grunt-contrib-coffee lets you write CoffeeScript instead of JavaScript for
your client-side code.

11.4 Using connect-assets to compile LESS and CoffeeScript
I don’t love Grunt, to be quite honest. I include it in the book because it’s incredibly
popular and powerful, but I find the code verbose and a little confusing. There’s
another solution for Express users: a piece of middleware called connect-assets (at
https://github.com/adunkman/connect-assets).

 connect-assets can concatenate, compile to, and minify JavaScript and CSS. It
supports CoffeeScript, Stylus, LESS, SASS, and even some EJS. It doesn’t support
Browserify and isn’t as configurable as build tools like Grunt or Gulp, but it’s very
easy to use.

 connect-assets is heavily inspired by the Sprockets asset pipeline from the Ruby on
Rails world. If you’ve used that, this will be quite familiar, but if you haven’t, don’t worry.

Registers the new watch
task to execute when you
run grunt watch
Licensed to <miler.888@gmail.com>

http://gruntjs.com/plugins
https://github.com/adunkman/connect-assets

210 CHAPTER 11 Deployment: assets and Heroku
A REMINDER ABOUT CONNECT Connect is another web framework for Node,
and in short, Express middleware is compatible with Connect middleware. A lot
of Express-compatible middleware has connect in the name like connect-assets.

11.4.1 Getting everything installed

You’ll need to npm install connect-assets --save and any other compilers you’ll need:

■ coffee-script for CoffeeScript support
■ stylus for Stylus support
■ less for LESS support
■ node-sass for SASS support
■ ejs for some EJS support
■ uglify-js for JavaScript minification
■ csswring for CSS minification

The last two won’t be used by default in development mode but will be in produc-
tion. If you don’t change the default options and forget to install those, your app
will fail in production. Make sure to get those installed! To install LESS, run npm
install less --save.

 You’ll also need to pick a directory for your assets to live in. By default, connect-
assets will look for your CSS-related assets in assets/css and your JavaScript-related
assets in assets/js, but this is configurable. I recommend using the defaults while
you’re getting started, so make a directory called assets and put the css and js directo-
ries inside.

11.4.2 Setting up the middleware

The middleware has quick-start options that make it easy to get started, but I strongly
recommend configuring things. For example, one of the configuration options can
keep connect-assets from muddying the global namespace, which it does by default.
The following listing shows what a simple application setup might look like.

var express = require("express");
var assets = require("connect-assets");

var app = express();
app.use(assets({
 helperContext: app.locals,
 paths: ["assets/css", "assets/js"]
 });

// …

This middleware has a number of sensible defaults. For example, it will enable mini-
fication and caching in production but disable them in development. You can override

Listing 11.24 Setting up the connect-assets middleware

Specifies asset paths you’re using.
Order matters—if main.js exists
in multiple directories, it’ll only
compile the one listed first.
Licensed to <miler.888@gmail.com>

211Using connect-assets to compile LESS and CoffeeScript
this configuration if you want; check the documentation for more detailed instructions.
We do override one default, which is the helperContext. By default, connect-assets
attaches its helpers to the global object. Instead, we attach them to app.locals so that
we don’t pollute the global namespace but still have access to the helpers from views.

 Now that you’ve set up the middleware, you’ll need to link to those assets from views.

11.4.3 Linking to assets from views

connect-assets provides two major helper functions to your views: js and css.
js("myfile") will generate a <script> tag that corresponds to myfile. The css helper
will do the same but for CSS, with a <link> tag. They return the HTML to include the
most recent version of your assets, which means that they’ll append a long hash to the
name to make sure your browser doesn’t use old cached assets.

 If you’re using Pug to render your views, you’ll reference them from your views
like this:

!= css("my-css-file")
!= js("my-javascript-file")

If you’re using EJS instead, it’s pretty similar. You reference connect-assets’s helpers
from your views like this:

<%- css("my-css-file") %>
<%- js("my-javascript-file") %>

If you’re using another view engine, you’ll need to make sure you aren’t escaping
HTML when you do this, because these helpers are spitting out raw HTML tags that
shouldn’t be escaped. In any case, these will spit out something like this

<link rel="stylesheet" href="/assets/my-css-file-{{SOME LONG HASH}}.css">
<script src="/assets/my-javascript-file-{{SOME LONG HASH}}.js>

and your assets will be loaded!

11.4.4 Concatenating scripts with directives

You can’t concatenate CSS files this way. Instead, you should use the @import syntax in
your CSS preprocessor (like LESS or Sass). But connect-assets lets you concatenate
JavaScript files using specially formatted comments.

 Let’s say that your JavaScript file requires jQuery. All you have to do is define a
comment that starts with //= require and then connect-assets will concatenate those
files for you magically:

//= require jquery
$(function() {
 // do what you need to do with jQuery
...

And that’s concatenation. It’s that easy.
Licensed to <miler.888@gmail.com>

212 CHAPTER 11 Deployment: assets and Heroku
 Now that we’ve looked at two ways to compile your assets, let’s look at how to
deploy your applications to the real web with Heroku.

11.5 Deploying to Heroku
Heroku’s website has buzzwords like “cloud platform” and “built by developers for
developers.” To us, it’s a way to deploy our Node.js applications onto the real inter-
net for free. No more localhost:3000! You’ll be able to have your apps on the real
life internet.

 Essentially, when you deploy your site, you’re sending your code to be run some-
where. In this case, when you deploy to Heroku, you’ll be sending code to Heroku’s
servers and they’ll run your Express applications.

 Like everything, there are a lot of ways to deploy your site. Heroku may not be the
best option for you. We choose it here because it’s relatively simple and it costs nothing
to get started.

11.5.1 Getting Heroku set up

First, you’ll need to get a Heroku account. Visit www.heroku.com and sign up (if you
don’t have an account). The signup process should be fairly straightforward if you’ve
ever signed up for any account online. Figure 11.2 shows their homepage.

Figure 11.2 Heroku’s homepage
Licensed to <miler.888@gmail.com>

http://www.heroku.com

213Deploying to Heroku
Next, you’ll want to download and install the Heroku Toolbelt from https://tool-
belt.heroku.com/. Follow the instructions for your specific OS. Installing the Heroku
Toolbelt on your computer will install three things:

■ Heroku client. A command-line tool for managing Heroku apps. You’ll use it to
create and manage your Express apps.

■ Foreman. Another command-line tool. You’ll use it to define how you want your
applications to run.

■ Git. The version control system that you may already have installed.

Once you’ve installed it, there’s one last thing to do: authenticate your computer with
Heroku. Open a command line and type heroku login. This will ask you for your Her-
oku username and password.

 Once you’ve done all that, Heroku should be set up.

11.5.2 Making a Heroku-ready app

Let’s make a simple Hello World application and deploy it to Heroku, shall we?
 To set up your app for Heroku, you don’t have to do too much different from what

you normally would. Although there are a few commands you’ll need to run in order
to deploy, the only changes you’ll need to make are

■ Make sure to start the app on process.env.PORT.
■ Make sure your package.json lists a Node version.
■ Create a file that will be run when Heroku starts your app (called a Procfile). In

our simple app, this file will be only one line.
■ Add a file called .gitignore to your project.

Now create a simple app and make sure you cross off these things.
 The Express part of this Hello World application should be pretty easy for you at

this point in the book, and there’s not much special you have to do to make sure that
it works for Heroku; it’s only a line or two.

 First, define your package.json, as in the following listing.

{
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "^5.0.0"
 },
 "engines": {
 "node": "4.2.x"
 }
}

Listing 11.25 package.json for your Heroku Express app

Tells Heroku (and anyone
running your app) that your
app requires Node 4.2
Licensed to <miler.888@gmail.com>

https://toolbelt.heroku.com/
https://toolbelt.heroku.com/

214 CHAPTER 11 Deployment: assets and Heroku
Nothing too new there except for the definition of which Node version to use. Next,
define app.js, where your Hello World code resides, as shown in the next listing.

var express = require("express");

var app = express();

app.set("port", process.env.PORT || 3000);

app.get("/", function(req, res) {
 res.send("Hello world!");
});

app.listen(app.get("port"), function() {
 console.log("App started on port " + app.get("port"));
});

Once again, not much is new. The only Heroku-specific thing here is how the port is
set. Heroku will set an environment variable for the port, which you’ll access through
process.env.PORT. If you never deal with that variable, you won’t be able to start your
app on Heroku on the proper port.

 The next part is the most foreign thing you’ve seen so far: a Procfile. It might
sound like a complicated new Heroku concept, but it’s really simple. When you run
your app, you type npm start into your command line. The Procfile codifies that and
tells Heroku to run npm start when your app begins. Create a file in the root of your
directory and call it Procfile (capital P, no file extension):

web: npm start

That’s not too bad, right? Heroku is pretty nice.
 As a last step, add a file that tells Git to ignore certain files. We don’t need to push

node_modules to your server, so make sure you ignore that file:

node_modules

Now that you have your application all ready to go, you can deploy it.

11.5.3 Deploying your first app

The first thing you’ll need to do, if you haven’t done it already, is put your app under
version control with Git. I’m going to assume you at least know the basics of Git, but if
you don’t, check out Try Git at https://try.github.io.

 To set up a Git project in this directory, type git init. Then use git add . to add
all of your files and git commit –m "Initial commit" to commit those changes to your
Git project. Once that’s all ready to go, type the following command:

heroku create

Listing 11.26 A Hello World Express app (app.js)
Licensed to <miler.888@gmail.com>

https://try.github.io

215Deploying to Heroku
This will set up a new URL for your Heroku app. The names it generates are always a
bit wacky—I got mighty-ravine-4205.herokuapp.com—but that’s the price you pay for free
hosting. You can change the URL or associate a domain name you own with a Heroku
address, but we won’t go into that here.

 Next, tell your newly created Heroku app that it’s a production Node environ-
ment. You’ll do this by setting the NODE_ENV environment variable on Heroku’s serv-
ers. Set that variable by running this command:

heroku config:set NODE_ENV=production

When you ran heroku create, Heroku added a remote Git server. When you push
your code to Heroku, Heroku will deploy your app (or redeploy it if you’ve already
deployed). This is just one Git command:

git push heroku master

This will first push your code to Heroku’s servers and then set up their servers with all
of your dependencies. You’ll run git push heroku master every time you want to rede-
ploy; that’s really the only command you’ll run more than once. There’s just one last
thing to do—tell Heroku that it should run your app with one process so that it’ll actu-
ally run on a real computer:

heroku ps:scale web=1

Suddenly, your app will be running on the real internet, as shown in figure 11.3. You
can type heroku open to open your app in your browser and see it running. You can
send this link to your friends. No more localhost, baby!

11.5.4 Running Grunt on Heroku

If you’re using connect-assets to compile your assets, then Heroku will work just fine
(assuming you’ve installed all of the dependencies properly). But if you want to use

Figure 11.3 Your Hello World app running on Heroku
Licensed to <miler.888@gmail.com>

216 CHAPTER 11 Deployment: assets and Heroku
Grunt (or another task runner like Gulp), you’ll need to run Grunt to build your
assets when you deploy your site.

 There’s a little trick you can use to make this work, which leverages a nice little fea-
ture of npm: the post install script. Heroku will run npm install when you deploy
your app, and you can tell Heroku to run Grunt right after that in order to build all of
your assets. This is a simple manner of adding another script to your package.json, as
the next listing shows.

// …
"scripts": {
 // …
 "postinstall": "grunt build"
},
// …

Now, when anyone (including Heroku) runs npm install, grunt build will run.

11.5.5 Making your server more crash resistant

No offense, but your server might just crash. It could be that you run out of memory,
or that you have an uncaught exception, or that a user has found a way to break your
server. If you’ve ever had this happen while you’re developing, you’ve probably seen
that an error sends your server process screeching to a halt. While you’re developing,
this is pretty helpful—you want to be aware that your app doesn’t work! In produc-
tion, however, it’s much more likely that you want your app to work at all costs. If you
have a crash, you’ll want your app to be resilient and restart.

 You saw Forever in the chapter about security, but here’s a refresher: it’s a tool
to keep your server up and running, even in the face of crashes. Instead of typing
node app.js, you’ll type forever app.js. Then, if your app crashes, Forever will
restart it.

 First, run npm install forever --save to install Forever as a dependency. Now,
you run forever app.js to start your server. You could add this to the Procfile or
change your npm start script, but I like to add a new script to package.json.

 Open your scripts in package.json and add the code in the following listing.

// …
"scripts": {
 // …
 "production": "forever app.js"
},
// …

Listing 11.27 Running Grunt in a postinstall script

Listing 11.28 Defining a script for running your server in production

Uses grunt build
as an example
Licensed to <miler.888@gmail.com>

217Summary
Now, when you run npm run production, your app will start with Forever. The next
step is to get Heroku to run this script, and that’s just a simple matter of changing
your Procfile:

web: npm run production

After this change, Heroku will run your app with Forever and keep your app restarting
after crashes.

 As always with Heroku, commit these changes into Git. (You’ll need to add your
files with git add . and then commit them with git commit –m "Your commit message
here!"). Once that’s done, you can deploy them to Heroku with git push heroku
master.

 You can use Forever in any kind of deployment, not just Heroku. Some of your
deployment configuration will have to change depending on your server setup, but
you can use Forever wherever you choose to deploy.

11.6 Summary
■ LESS is a language that compiles to CSS. It adds a lot of conveniences like vari-

ables and mixins.
■ Browserify is a tool for packaging JavaScript to run in the browser. It packages

files so that you can use Node.js’s module system in the browser, allowing you to
share code between your client and your server.

■ Grunt is a generic task runner that can do lots of things. One of the things
you’ll do with Grunt is compile CSS with LESS and package JavaScript with
Browserify.

■ connect-assets is an alternative to Grunt in some ways and allows you to compile
CSS and JavaScript using Express middleware.

■ Heroku is one of many cloud application platforms that allow you to easily
deploy your Express applications to the real world.
Licensed to <miler.888@gmail.com>

Best practices
It’s time to bring this book to a close.
 If this book were a tragedy, we’d probably end with a dramatic death. If it were a

comedy, we might have a romantic wedding. Unfortunately, this is a book about
Express, a topic not known for its drama and romance. The best you’ll get is this: a
set of best practices for large Express applications. I’ll do my best to make it roman-
tic and dramatic.

 With small applications, organization doesn’t matter much. You can fit your app
in a single file or a handful of small files. But as your apps become larger, these con-
siderations become more important. How should you organize your files so that
your codebase is easy to work with? What kind of conventions should you adhere to
in order to best support a team of developers?

This chapter covers
■ Benefits of simplicity in your code
■ Structuring your app’s files
■ Using the npm shrinkwrap command to lock

down dependency versions for reliability (and
the benefits of doing so)

■ Avoiding installing modules globally
218

Licensed to <miler.888@gmail.com>

219Simplicity
 In this final chapter, I’ll do my best to share my experience. Very little of this chap-
ter will be strictly factual; I’ll lend opinions to the unopinionated philosophy of
Express with respect to what it takes to build a medium-to-large application with it.

 I’ll make sure to repeat this disclaimer, but remember: This chapter is mostly opinions
and conventions I’ve found. You may disagree or find that your application doesn’t fit into these
molds. That’s the beauty of Express—you have a lot of flexibility.

 This might not be as emotional as a comedy or a tragedy, but I’ll do my best.

12.1 Simplicity
In this chapter of my opinions, let me offer an overarching one before we delve into
specifics. There are lots of best practices for maintaining large codebases, but I think
they all boil down to one thing: simplicity. More explicitly, your code should be easy for
other developers to follow and you should minimize how much context a person has
to keep in their head.

 In order to understand an Express application, you already have to know a lot. You
have to be reasonably proficient in the JavaScript programming language in order to
read the code; you have to understand how HTTP works in order to understand rout-
ing; you have to understand Node and its evented I/O; and you have to understand all
of Express’s features like routing, middleware, views, and more. Each of these things
take a long time to learn and likely builds on experience from earlier in your career.
It’s a huge pile of stuff to keep in your head! Your applications should try to add to
that massive pile of required knowledge as little as possible.

 I think we’ve all written code (I certainly have) that’s an intertwined mess that only
we can hope to understand. I like to imagine one of those corkboards covered with
pictures, all interconnected in a web of red string. Here are a couple of ways to see
how deep the rabbit hole of your code goes:

■ Look at a piece of your code—maybe it’s a route handler or a middleware function—and
ask yourself how many other things you’d need to know in order to understand it. Does it
depend on a middleware earlier in the stack? How many different database
models does it depend on? How many routers deep are you? How many files
have you looked at to get to this point?

■ How confused are your fellow developers? How quickly could they add a feature to your
app? If they’re confused and unable to work quickly, that might mean that your
code is too intertwined.

You have to be pretty rigorous about simplicity, especially because Express is so flexi-
ble and unopinionated. We’ll talk about some of these methods (and others) in this
chapter, but a lot of it is more nebulous, so keep this in mind!

 All right, enough with this abstract stuff! Let’s talk about specifics.
Licensed to <miler.888@gmail.com>

220 CHAPTER 12 Best practices
12.2 File structure pattern
Express applications can be organized however you please. You could put everything
into one giant file if you wanted to. As you might imagine, this might not make for an
easily maintainable application.

 Despite the fact that Express is unopinionated, most Express applications I’ve
worked with have a similar structure to the one in figure 12.1. (This is very similar to
the kinds of applications that are generated with the official express-generator. This
is no coincidence!)

 Here are all of the common files in an Express application of this structure:

■ package.json should come as no surprise—it’s present in every Node project. This will have
all of the app’s dependencies as well as all of your npm scripts. You’ve seen differ-
ent incarnations of this file throughout the book and it’s not different in a big app.

■ app.js is the main application code—the entry point. This is where you call express()
to instantiate a new Express application. It is also where you put middleware
that’s common to all routes, like security or static file middleware. This file
doesn’t start the app, as you’ll see—it assigns the app to module.exports.

■ bin is a folder that holds executable scripts relevant to your application. There’s often
just one (listed here), but sometimes more are required.

– bin/www is an executable Node script that requires your app (from
app.js) and starts it. Calling npm start should run this script.

■ config is a folder that’ll hold any configuration for your app. It’s often full of JSON files
that specify things like default port numbers or localization strings.

■ public is a folder that’s served by static file middleware. It’ll have any static files
inside—HTML pages, text files, images, videos, and so on. The static file middle-
ware will also serve any of public’s subfolders. The HTML5 Boilerplate at

Figure 12.1 A common folder
structure for Express applications
Licensed to <miler.888@gmail.com>

221Locking down dependency versions
https://html5boilerplate.com/, for example, presents a good selection of com-
mon static files you might add here.

■ routes is a folder that holds numerous JavaScript files, each one exporting an Express
router. You might have a router for all URLs that start with /users and another
for all that start with /photos. Chapter 5 has all the details about routers and
routing—check out section 5.3 for examples of how this works.

■ test is a folder that holds all of your test code. Chapter 9 has all the juicy details
about this.

■ views is a folder that holds all of your views. Typically they’re written in EJS or Pug,
as shown in chapter 7, but there are many other templating languages you
can use.

The best way to see an app that has most of these conventions is by using the official
Express application generator. You can install this with npm install -g express-
generator. Once it’s installed, you can run express my-new-app and it’ll create a
folder called my-express-app with a skeleton app set up, as shown in figure 12.1.

 Although these are just patterns and conventions, patterns like this tend to emerge
in Express applications I’ve seen.

12.3 Locking down dependency versions
Node has far and away the best dependency system I’ve used. A coworker said, in
describing Node and npm: “They nailed it.”

 npm uses semantic versioning (sometimes shortened to semver) for all of its pack-
ages. Versions are broken up into three numbers: major, minor, and patch. For exam-
ple, version 1.2.3 is major version 1, minor version 2, and patch version 3.

 In the rules of semantic versioning, a major version upgrade can have a change
that is considered breaking. A breaking change is one where old code wouldn’t be
compatible with new code. For example, code that worked in Express major version
3 doesn’t necessarily work with major version 4. Minor version changes are, by con-
trast, not breaking. They generally mean a new feature that doesn’t break existing
code. Patch versions are for, well, patches—they’re reserved for bug fixes and per-
formance enhancements. Patches shouldn’t break your code; they should generally
make things better.

MAJOR VERSION ZERO There’s one asterisk to this: basically anything goes if
the major version is 0. The whole package is considered to be unstable at
that point.

By default, when you npm install --save a package, it downloads the latest version
from the npm registry and then puts an optimistic version number in your pack-
age.json file. That means that if someone else on your team runs npm install in the
project (or if you’re reinstalling), they might get a newer version than the one you
originally downloaded. That new version can have a higher minor version or higher
Licensed to <miler.888@gmail.com>

https://html5boilerplate.com/

222 CHAPTER 12 Best practices
patch version, but it can’t have a higher major version. That means that it doesn’t
download the absolute latest version of a package; it downloads the latest version that
should still be compatible. Figure 12.2 expands on this.

All good, right? If all packages adhere to semantic versioning, you should always want
to get the latest compatible version so that you have all the latest features and have all
the newest bug fixes.

 But here’s the rub: not all packages adhere perfectly to semantic versioning. Usu-
ally, it’s because people use packages in ways the original developers don’t intend. Per-
haps you’re relying on an untested feature or weird quirk in the library that’s
overlooked by the developers. You can’t really blame these people—no programmer
has a clean, bug-free track record, especially when other developers are using their
code in unexpected ways.

 I find that 99% of the time, this isn’t an issue. The modules I use tend to be good
about semantic versioning, and npm’s optimistic versioning works well. But when I’m
deploying a business-critical application into production (also known as the real
world), I like to lock down my dependency versions to minimize any potential hic-
cups. I don’t want things to break with a new version of a package!

 There are two ways to lock versions down: one is simple but less thorough and the
other is very thorough.

12.3.1 The simple way: eschewing optimistic versioning

A quick way to solve this problem is by obliterating optimistic versioning in your pack-
age.json. Optimistic versioning in your package.json file might look something like
the following listing.

// …
"dependencies": {
 "express": "^5.0.0",
 "ejs": "~2.3.2"
}
// …

Listing 12.1 Example of optimistic versioning in your package.json

"my-fun-package": "^1.2.3"

Package
name

Marker: Install the latest package
version where the major version is 1.

Major
version

Minor
version

Patch
version

Figure 12.2 How optimistic
versioning looks in package.json
Licensed to <miler.888@gmail.com>

223Locking down dependency versions
The ^ character indicates optimistic versioning is allowed. You’ll get all patch and minor
updates. The ~ character indicates a slightly less optimistic versioning. You’ll get only
patch updates.

 If you’re editing your package.json, you can specify the dependency to an exact
version. The previous example would look like this next listing.

// …
"dependencies": {
 "express": "5.0.0",
 "ejs": "2.3.2"
}
// …

Removing the ^ and ~ characters from the version number indicates only that specific
version of the package should be downloaded and used. These edits are relatively easy
to do and can lock a package down to a specific version.

 If you’re installing new packages, you can turn off npm’s optimistic versioning by
changing the --save flag to –save-exact. For example, npm install --save express
becomes npm install --save-exact express. This will install the latest version of
Express, just like always, but it won’t mark it optimistically in your package.json—it’ll
specify an exact version.

 This simple solution has a drawback: it doesn’t pin down the version of subdepen-
dencies (the dependencies of your dependencies). The following listing shows the
dependency tree of Express.

your-express-app@0.0.0
└─┬ express@5.0.0
 ├─┬ accepts@1.2.12
 │ ├─┬ mime-types@2.1.6
 │ │ └── mime-db@1.18.0
 │ └── negotiator@0.5.3
 ├── array-flatten@1.1.0
 ├── content-disposition@0.5.0
 ├── content-type@1.0.1
 ├── cookie@0.1.3
 ├── cookie-signature@1.0.6
 ├─┬ debug@2.2.0
 │ └── ms@0.7.1
 ├── depd@1.0.1
 ├── escape-html@1.0.2
 ├── etag@1.7.0
 ├─┬ finalhandler@0.4.0
 │ └── unpipe@1.0.0
 ├── fresh@0.3.0
 ├── merge-descriptors@1.0.0
 ├── methods@1.1.1

Listing 12.2 Example of omitting optimistic versioning in a package.json

Listing 12.3 Express’s (big!) dependency tree
Licensed to <miler.888@gmail.com>

224 CHAPTER 12 Best practices
 ├─┬ on-finished@2.3.0
 │ └── ee-first@1.1.1
 ├── parseurl@1.3.0
 ├── path-is-absolute@1.0.0
 ├── path-to-regexp@0.1.6
 ├─┬ proxy-addr@1.0.8
 │ ├── forwarded@0.1.0
 │ └── ipaddr.js@1.0.1
 ├── qs@4.0.0
 ├── range-parser@1.0.2
 ├─┬ router@1.1.3
 │ ├── array-flatten@1.1.1
 │ ├── path-to-regexp@0.1.7
 │ └── setprototypeof@1.0.0
 ├─┬ send@0.13.0
 │ ├── destroy@1.0.3
 │ ├─┬ http-errors@1.3.1
 │ │ └── inherits@2.0.1
 │ ├── mime@1.3.4
 │ ├── ms@0.7.1
 │ └── statuses@1.2.1
 ├── serve-static@1.10.0
 ├─┬ type-is@1.6.8
 │ ├── media-typer@0.3.0
 │ └─┬ mime-types@2.1.6
 │ └── mime-db@1.18.0
 ├── utils-merge@1.0.0
└── vary@1.0.1

I ran into a problem when trying to use the Backbone.js library. I wanted to pin to an
exact version of Backbone, which was easy: I specified the version. But in Backbone’s
package.json (which is out of my control) it specified a version of Underscore.js that
was optimistically versioned. That means that I could get a new version of Underscore
if I reinstalled my packages, and more dangerously, I could get a new version of
Underscore when deploying my code to the real world. Your dependency tree could
look like this one day

your-express-app@0.0.0
└─┬ backbone@1.2.3
 └── underscore@1.0.0

but if Underscore updated, it could look like this on another day:

your-express-app@0.0.0
└─┬ backbone@1.2.3
 └── underscore@1.1.0

Note the difference in Underscore’s version.
 With this method, there’s no way to ensure that the versions of your subdependen-

cies (or subsubdependencies, and so on) are pinned down. This might be okay, or it
might not be. If it’s not, you can use a nice feature of npm called shrinkwrap.
Licensed to <miler.888@gmail.com>

225Locking down dependency versions
12.3.2 The thorough way: npm’s shrinkwrap command

The problem with the previous solution is that it doesn’t lock down subdependency
versions. npm has a subcommand called shrinkwrap that solves this problem.

 Let’s say you’ve run npm install and everything works just fine. You’re at a state
where you want to lock down your dependencies. At this point, run a single command
from somewhere in your project:

npm shrinkwrap

You can run this in any Node project that has a package.json file and dependencies. If
all goes well, there will be a single line of output: wrote npm-shrinkwrap.json. (If it
fails, it’s likely because you’re executing this from a non-project directory or are miss-
ing a package.json file.)

 Look at the file in the next listing. You’ll see that it has a list of dependencies, their
versions, and then those dependencies’ dependencies, and so on. The listing shows a
snippet of a project that only has Express installed.

{
 "dependencies": {
 "express": {
 "version": "5.0.0",
 // …
 "dependencies": {
 "accepts": {
 "version": "1.2.12",
 // …
 "dependencies": {
 "mime-types": {
 "version": "2.1.6",
 // …
 "dependencies": {
 "mime-db": {
 "version": "1.18.0",
 // …
 }
 }
 },
 "negotiator": {
 "version": "0.5.3",
 // …
 }
 }
 },
 // …

The main thing to notice is that the whole dependency tree is specified, not just the
top layer like in package.json.

Listing 12.4 Snippet of an example npm-shrinkwrap.json file
Licensed to <miler.888@gmail.com>

226 CHAPTER 12 Best practices
 The next time you issue npm install, it won’t look at the packages in pack-
age.json—it’ll look at the files in npm-shrinkwrap.json and install from there. Every
time npm install runs, it looks for the shrinkwrap file and tries to install from there.
If you don’t have one (as we haven’t for the rest of this book), it’ll look at pack-
age.json.

 As with package.json, you typically check npm-shrinkwrap.json into version con-
trol. This allows all developers on the project to keep the same package versions,
which is the whole point of shrink-wrapping!

12.3.3 Upgrading and adding dependencies

This is all good once you’ve locked in your dependencies, but you probably don’t
want to freeze all of your dependencies forever. You might want to get bug fixes or
patches or new features—you just want it to happen on your terms.

 To update or add a dependency, you’ll need to run npm install with a package
name and a package version. For example, if you’re updating Express from 4.12.0 to
4.12.1, you’ll run npm install express@4.12.1. If you want to install a new package
(Helmet, for example), run npm install helmet. This will update the version or
add the package in your node_modules folder, and you can start testing. Once it all
looks good to you, you can run npm shrinkwrap again to lock in that dependency
version.

 Sometimes, shrink-wrapping isn’t for you. You might want to get all of the latest
and greatest features and patches without having to update manually. Sometimes,
though, you want the security of having the same dependencies across all installations
of your project.

12.4 Localized dependencies
Let’s keep talking about dependencies but with a different angle. npm allows you to
install packages globally on your system that execute as commands. There are a few
popular ones, like Bower, Grunt, Mocha, and more. There’s nothing wrong with
doing this; there are a lot of tools that you need to install globally on your system.
This means that to run the Grunt command, you can type grunt from anywhere on
your computer.

 But you can encounter drawbacks when someone new comes into your project.
Take Grunt, for example. Two problems can occur when installing Grunt globally:

■ A new developer doesn’t have Grunt installed on their system at all. This means that
you’ll have to tell them to install it in your Readme or in some other
documentation.

■ What if they have Grunt installed but it’s the wrong version? You could imagine them
having a version of Grunt that’s either too old or too new, which could lead to
weird errors that might be tough to track down.
Licensed to <miler.888@gmail.com>

227Localized dependencies
There’s a pretty easy solution to these two problems: install Grunt as a dependency of
your project, not globally.

 In chapter 9, we used Mocha to use as a test framework. We could’ve installed this
globally, but we didn’t—we installed it locally to our project.

 When you install Mocha, it installs the mocha executable command into node_
modules/.bin/mocha. You can get at it in one of two ways: by executing it directly or
by putting it inside an npm script.

12.4.1 Invoking commands directly

The simplest way is to invoke these commands directly. This is pretty darn easy,
although it’s a bit of typing: type the path to the command. If you’re trying to run
Mocha, run node_modules/.bin/mocha. If you’re trying to run Bower, run node_
modules/.bin/bower. (On Windows, running Mocha would be node_modules\.bin\
mocha.) There’s not much to this conceptually!

12.4.2 Executing commands from npm scripts

The other way to do this is by adding the command as an npm script. Once again, let’s
say that you want to run Mocha. The next listing shows how you’d specify that as an
npm script.

// …
"scripts": {
 "test": "mocha"
},
// …

When you type npm test, the mocha command is magically run. Let’s resurface a dia-
gram from chapter 9 that explains how this works; see figure 12.3.

This is generally useful when you want to run the same kind of command over and
over. It also keeps dependencies out of your global list!

Listing 12.5 Specifying Mocha as an npm script

npm test

package.json

"scripts": {

"test mocha": " "

}

node_modules/.bin/mocha

Figure 12.3 Typing npm test
flows through a few steps before
executing the command.
Licensed to <miler.888@gmail.com>

228 CHAPTER 12 Best practices
12.5 Summary
■ Simplicity is a high-level goal for software in general. You should be rigorous

about removing complexity in your software.
■ There is a folder and file structure that emerges for most Express applications.
■ For maximum reliability, you should lock down the versions of your dependen-

cies. This has some disadvantages—namely, you won’t be automatically running
the latest and greatest code—but it has the advantage that your code won’t be
automatically upgraded without your knowledge.

■ Installing dependencies locally will help keep your system clean and your proj-
ects reproducible. You’ll use npm scripts to do this.

Now it’s time to go out and build cool things with Express!
Licensed to <miler.888@gmail.com>

appendix
Other helpful modules

In this book, I covered a number of third-party Node modules, but there are myr-
iad that I couldn’t get to. This appendix is a whirlwind tour of a bunch of modules
I find useful. This list isn’t thorough and is by no means exhaustive, but I hope it
can help you find modules you’ll like:

■ Sequelize is an ORM for SQL. In this book we discuss Mongoose, which deals
with the Mongo database; Sequelize is the Mongoose of SQL databases. It’s
an ORM that supports migrations and interfaces with various SQL databases.
Check it out at http://sequelizejs.com/.

■ Lodash is a utility library. You may have heard of the Underscore library;
Lodash is very similar. It boasts higher performance and a few extra features.
You can read more at http://lodash.com/.

■ Async is a utility library that makes it easier to handle patterns in asynchronous pro-
gramming. See more at https://github.com/caolan/async.

■ Request is almost the opposite of Express. Whereas Express lets you accept incoming
HTTP requests, Request lets you make outgoing HTTP requests. It has a simple
API, and you can find out more at https://www.npmjs.com/package/request.

■ Gulp calls itself the “streaming build system.” It’s an alternative to tools like Grunt,
and it allows you to compile assets, minify code, run tests, and more. It uses
Node’s streams to increase performance. See http://gulpjs.com/ for more
information.

■ node-canvas ports the HTML5 Canvas API to Node, allowing you to draw graphics
on the server. See the documentation at https://github.com/Automattic/
node-canvas.

■ Sinon.JS is useful in testing. Sometimes you want to test that a function is called
and a lot more. Sinon lets you make sure a function is called with specific
arguments or a specific number of times. Check it out at http://sinonjs.org/.
229

Licensed to <miler.888@gmail.com>

http://sequelizejs.com/
http://lodash.com/
https://github.com/caolan/async
https://www.npmjs.com/package/request
http://gulpjs.com/
https://github.com/Automattic/node-canvas
https://github.com/Automattic/node-canvas
http://sinonjs.org/

230 APPENDIX Other helpful modules
■ Zombie.js is a headless browser. There are other browser testing tools like Selenium
and PhantomJS that spool up real browsers that you can control. When you
need 100% compatibility with browsers, they’re a good call. But they can be
slow and unwieldy, which is where Zombie comes in. Zombie is a really quick
headless browser that makes it easy to test your applications in a fake web
browser. Its docs live at http://zombie.labnotes.org/.

■ Supererror overrides console.error. It makes it better, giving you line numbers, more
info, and better formatting. Check it out at https://github.com/nebulade/
supererror.

It’s a short list, but I wanted to tell you that I love these modules! For more helpful
Node resources and modules, you can check out these sites:

■ Awesome Node.js by Sindre Sorhus (https://github.com/sindresorhus/awesome-
nodejs)

■ Eduardo Rolim’s list of the same name (https://github.com/vndmtrx/awesome-
nodejs)

■ Node Weekly (http://nodeweekly.com/)
Licensed to <miler.888@gmail.com>

http://zombie.labnotes.org/
https://github.com/nebulade/supererror
https://github.com/nebulade/supererror
https://github.com/sindresorhus/awesome-nodejs
https://github.com/vndmtrx/awesome-nodejs
http://nodeweekly.com/
https://github.com/sindresorhus/awesome-nodejs
https://github.com/vndmtrx/awesome-nodejs

index
Symbols

^ character 223
% (modulo operator) 37
<% expression %> 110
<%- userString %> 180
<%= myString %> 180
== (double-equals

operator) 174
=== (strict equality operator)

72
See also ===(triple-equals

operator)
=== (triple-equals operator) 174
~ character 223

Numerics

100 (Continue) status code 101
101 (Switching Protocols) status

code 101
200 (OK) status code 101
201 (Created) status code 101
202 (Accepted) status code 101
204 (No Content) status

code 101
301 (Moved Permanently) sta-

tus code 102
303 (See Other) status

code 102
307 (Temporary Redirect) sta-

tus code 102
401 (Unauthorized) error 102
403 (Forbidden) error 102
404 (Not Found) error 103
404 handler middleware 61–62

A

a:active 199
Accept header 161–162
Accepted (202) status code 101
Accepts header 160
Adobe products, and cross-ori-

gin web requests 190–191
a:hover 199
ALLOW-FROM option 190
Angular.js framework 6
APIs, building 87–103

API versioning 96–98
CRUD (create, read, update,

delete) APIs 92–95
CRUD applications with

HTTP methods 95
HTTP methods 93–95

Express-powered JSON
API 90–92

HTTP status codes,
setting 99–103
100 range 101
200 range 101
300 range 102
400 range 102–103
500 range 103

JSON API example 88–89
app.get function 40
app.js file 220
app.listen(3000) 34
app.post function 40
appName property 106
arraywrap package 177
Async utility library 229
auditing code 186

authenticating users, setting up
Passport 137–143

middleware 137–138
real authentication 139–140
routes and views 140
serializing and deserializing

users 138–139
automated testing. See testing

applications
a:visited 199
Awesome Node.js 230

B

Backbone.js library 224
bcrypt algorithm 126
beforeEach feature,

Mocha 163–164
best practices 218–228

file structure pattern 220–221
localized dependencies

226–228
executing commands from

npm scripts 227
invoking commands

directly 227
locking down dependency

versions 221–226
eschewing optimistic

versioning 222–224
npm's shrinkwrap

command 225–226
upgrading and adding

dependencies 226
simplicity 219

bin/ folder 220
231

Licensed to <miler.888@gmail.com>

INDEX232
Binary JSON. See BSON
bio field 126
biography 126
block body 114
block header 114
<body> tag 198
body-parser module 69
Bootstrap 47
border-radius property

197–198
bower command 58
breaking changes 221
Browserify, using with

Grunt 200–203, 207
browsers

preventing from inferring file
type 191

requiring modules in
200–203

BSON (Binary JSON) 122
bug free code 173–177

enforcing good JavaScript
with JSHint 174–175

halting after errors happen
in callbacks 175–176

parsing of query strings
176–177

built-in modules, Node.js 20–21

C

cache property 107
callbacks, halting after errors

happen in 175–176
capitalize function 151, 159
Chai assertion library, setting

up 151–152
charAt method 156
Cheerio library 146, 168
Chrome browser 3, 5
clickjacking, prevention of

189–190
CoffeeScript

compiling using connect-
assets 209

using connect-assets to
compile 212

CommonJS 20
compression module 69
config/ folder 220
Connect framework 13, 210
connect-assets 209–212

concatenating scripts with
directives 211–212

installing 210

linking to assets from
views 211

setting up middleware
210–211

connect-ratelimit 39
console.log function 19, 63
Consolidate.js library 108–109
Content Security Policy

header 181
cookie module 186
cookie-parser module 40, 69
core parts of 9–12

conveniences 12
middleware 10–11
routing 11
subapplications 11–12

Created (201) status code 101
createdAt property 130
Crockford, Douglas 174
crossdomain.xml file 191
cross-origin web requests, Adobe

products and 190–191
cross-site scripting attack

prevention 179–181
escaping user input 180–181
mitigating XSS with HTTP

headers 181
CRUD (create, read, update,

delete) APIs 92–95
CRUD applications with

HTTP methods 95
HTTP methods 93–95

CSRF (cross-site request forgery)
prevention 182–185

attack example 182–183
in Express 184–185
overview 183–184

_csrf parameter 184
css function 211
cssnext tool 200
cURL command-line tool 95
currentUser property 106, 115

D

database models 125
Debian 123
DELETE methods 94
DENY option 190
dependencies

localized 226–228
executing commands from

npm scripts 227
invoking commands

directly 227

safety of 185–187
auditing code 186
checking against Node

Security Project 187
keeping dependencies up

to date 186–187
versions, locking down

221–226
eschewing optimistic

versioning 222–224
npm's shrinkwrap

command 225–226
upgrading and adding

dependencies 226
dependencies key,

package.json 33
--depth flag 186
deserializing users 138–139
display name 126
displayName field 126
double-equals operator

(==) 174
drivers 121

E

EJS (Embedded
JavaScript) 109–112

adding own filters 112
including other EJS templates

within own 110–112
syntax of 109–112

ejs variable 112
ejs.filters property 112
Embedded JavaScript. See EJS
encodeURI function 180
ensureAuthenticated 142–143
err argument 27
error handling middleware

65–68
expect function 162
expect property 153
Express 16–17

core parts of 9–12
conveniences 12
middleware 10–11
routing 11
subapplications 11–12

ecosystem surrounding 12–16
how used 14
minimal philosophy of 9
third-party modules for

14–16
versus other web application

frameworks 12–13
Licensed to <miler.888@gmail.com>

INDEX 233
express.static middleware
38–39, 64

express() function 34, 220
extending, request object 41–42

F

file structure pattern 220–221
file type, preventing browsers

from inferring 191
filters, adding own in EJS 112
findOne 135
Forecast.io 81
Foreman tool 213
Forever tool 188, 216–217
fs.readFile function 27
fs.stats function 61
functions, in LESS 194, 196–197

G

GET methods 93
getProfilePhotoPath

function 78
Git version control system 213
Google Chrome. See Chrome

browser
Grunt tool 203–209

compiling LESS using
204–206

installing 203–204
minifying JavaScript

with 207–208
running on Heroku 215–216
using Browserify with 207
using grunt watch 208–209

grunt-contrib-coffee 209
grunt-contrib-concat 209
grunt-contrib-imagemin 209
grunt-contrib-requirejs 209
grunt-contrib-sass 209
Gruntfile 204–205, 208
guestbook example

program 44–49
creating views 46–48
main app code 45–46
set up 45
starting up 48–49

Gulp tool 229

H

Hapi.js framework 12
<header> tag 198
Helmet module 179, 190

Heroku client tool 212–217
deploying first app 214–215
making Heroku-ready

app 213–214
making server more crash

resistant 216
running Grunt on 215–216
setting up 212–213

Homebrew package
manager 123

HSTS (HTTP Strict Transport
Security) 178

HTML responses, testing 166
<html> element 112, 198
HTML5 Rocks guide 181
HTTP headers, mitigating XSS

with 181
HTTP methods 93–95
http module, Node.js 28
HTTP status codes, setting

99–103
100 range 101
200 range 101
300 range 102
400 range 102–103
500 range 103

HTTP Strict Transport Security.
See HSTS

http variable 28
http.createServer 34
http.createServer function 28
HTTPS

protecting users using 178–179
using Express with 78–80

I

_id property 122, 138
idempotence 93
<iframe> element 183, 190
include function 112
includes, in LESS 195, 200
index.ejs 44
installing

Grunt tool 203–204
Node.js 19–20

integration tests 159

J

JavaScript
enforcing good JavaScript

with JSHint 174–175
minifying using Grunt

tool 207–208

JavaScript: The Good Parts
(Crockford) 174

JavaScript. See EJS (Embedded
JavaScript)

js function 211
JSHint, enforcing good

JavaScript using 174–175
JSON API

example 88–89
Express-powered 90–92

K

Kraken 13

L

LESS 194–200
alternatives to 200
compiling using connect-

assets 209–212
compiling using Grunt

204–206
functions 196–197
includes 200
mixins 197–198
nesting 198–199
variables 195–196

<link> tag 211
Linux 123
local strategy 139
localized dependencies

226–228
executing commands from

npm scripts 227
invoking commands

directly 227
LocalStrategy variable 139–140
locking down dependency

versions 221–226
eschewing optimistic

versioning 222–224
npm's shrinkwrap

command 225–226
upgrading and adding

dependencies 226
Lodash utility library 229

M

MEAN (MongoDB, Express,
Angular) 120

message variable 44
Meteor framework 13
Method token 93
Licensed to <miler.888@gmail.com>

INDEX234
middleware 10–11, 32–40, 53
error handling

middleware 65–68
finding more 39–40
middleware stack 54–55
passive middleware code

36–37
request and response, code

that changes 37–38
static file server example

app 55–65
404 handler

middleware 61–62
built-in static file

middleware 64–65
middleware 60–61
Morgan middleware 63–64
set up 56–57
writing first function

58–59
static files with 76–78
third-party middleware

libraries 38–40
express.static 38–39
Morgan logger 38

workings of at high level
34–36

middleware stack 54
Mint 123
mixins

in LESS 195, 197–198
in Pug 115

Mocha testing framework
150–159

adding more tests 154–158
Node.js testing 151
reversing tests 159
running code before test 158
setting up Mocha and Chai

assertion library 151–152
testing for errors 159
writing first test 153–154

module.exports function 25, 30
modules

Node.js 20–25
defining own modules

24–25
requiring built-in

modules 20–21
requiring third-party mod-

ules with package.json
and npm 21–23

requiring in browsers
200–203

modulo operator (%) 37

MongoDB 119–143
Mongoose, using to talk to

from Node 124–136
creating user model

125–129
project setup 124–125
using model 129–136

reasons for using 120–123
setting up 123
SQL and 122–123
talking to MongoDB from

Node using 135–136
creating user model

125–129
project setup 124–125
using model 129–136

workings of 121–122
MongoDB, Express, Angular. See

MEAN
Mongoose, talking to MongoDB

from Node using 124
morgan function 63
Morgan logger 38
Morgan middleware 63–64
Moved Permanenly (301) status

code 102
Mozilla Developer Network 73
multiple static file

directories 77–78
Mustache templating

system 22–23
Myth tool 200

N

<nav> tag 198
nesting, in LESS 194, 198–199
No Content (204) status

code 101
Node Security Project, checking

against 187
Node Version Manager. See NVM
Node, talking to MongoDB

from 124–136
creating user model 125–129
project setup 124–125
using model 129–136

Node.js 18
asynchronous nature of

25–27
building web server using 28
Express functionality in 6–7
http module 28
installing 19–20
modules 20–25

defining own modules
24–25

requiring built-in
modules 20–21

requiring third-party mod-
ules with package.json
and npm 21–23

overview 4–6
testing 151
third-party modules for 14–16
what Express adds to 8–9

node-canvas 229
NODE_ENV environment

variable 215
nodemon 60
non-relational databases 120
noSniff middleware 192
NoSQL databases 120
Not Found (404) error 103
npm 22

executing commands from
npm scripts 227

shrinkwrap command 225–226
start command 56–59
third-party modules with

21–23
NVM (Node Version

Manager) 19

O

OK (200) status code 101
OpenSSL 79
optimistic versioning,

eschewing 222–224

P

package.json, third-party mod-
ules with 21–23

parameters, grabbing to
routes 72

params property 72
parse function 20
parseInt function 91
parsing of query strings 176–177
passive middleware code 36–37
Passport

overview 136–143
setting up 137–143

middleware 137–138
real authentication 139–140
routes and views 140
serializing and deserializ-

ing users 138–139
Licensed to <miler.888@gmail.com>

INDEX 235
passport.authenticate
function 141

password field 126
path.join function 61, 64
POST methods 93
Procfile 214
protecting users 178–185

cross-site request forgery
(CSRF) prevention 182–185
attack example 182–183
in Express 184–185
overview 183–184

cross-site scripting attack
prevention 179–181
escaping user input

180–181
mitigating XSS with HTTP

headers 181
using HTTPS 178–179

public/ folder 220
Pug 112–115

layouts in 113–115
mixins in 115
referencing view using 211
syntax of 112–113

Pure framework 81, 84
PUT methods 93

Q

query strings, parsing of
176–177

R

randomInteger 24
readFile method 27
regular expressions, using to

match routes 72–74
relational databases 120
render method 44, 106
renderFile function 107
req.body variable 45
req.csrfToken method 184
req.logout function 141
req.query 176
Request (HTTP request

client) 229
request handlers 7
request object, extending 41–42
request.get method 42
require function 20, 30, 200
res.end method 54–55, 59, 65
res.render function 108
res.send() method 42, 59

res.sendFile method 55, 59–60,
66–67

res.status() function 42
response object, extending

41–42
response-time 40
Roole tool 200
routers 11
routes/ folder 221
routing 11, 40–41

demo 80–85
application in action 85
main app code 81–82
setting up 81
two views 83–85

example of 71
features of 71–74

grabbing parameters to
routes 72

grabbing query
arguments 74

using regular expressions to
match routes 72–74

overview 70–71
serving static files 76–78

routing to static files 78
static files with

middleware 76–78
splitting up app using 74–76
using Express with

HTTPS 78–80

S

SAMEORIGIN option 190
Sass, as alternative to LESS 200
--save flag 22, 33
Schneier, Bruce 173
<script> tags 20, 180, 211
security 172

Adobe products and cross-ori-
gin web requests 190–191

bug free code 173–177
enforcing good JavaScript

with JSHint 174–175
halting after errors happen

in callbacks 175–176
parsing of query

strings 176–177
clickjacking, prevention

of 189–190
dependencies safety 185–187

auditing code 186
checking against Node

Security Project 187

keeping dependencies up
to date 186–187

disabling x-powered-by
option 188–189

mindset 173
preventing browsers from

inferring file type 191
protecting users 178–185

cross-site request forgery
(CSRF) prevention
182–185

cross-site scripting attack
prevention 179–181

using HTTPS 178–179
server crashes 187–188

See Other (303) status
code 102

semantic versioning
(semver) 221

sendFile method 8, 12, 42, 78
Sequelize tool 121
serializing users 138–139
server crashes 187–188
servers, testing with

Supertest 159–171
filling in code for first

tests 165–166
testing HTML responses 166
testing simple API 161–165

shrinkwrap command,
npm 225–226

simplicity 219
Sinon.JS 229
SQL, MongoDB and 122–123
SSL (Secure Sockets Layer) 79
static file server example

app 55–65
404 handler middleware

61–62
built-in static file

middleware 64–65
middleware 60–61
Morgan middleware 63–64
set up 56–57
writing first function 58–59

static files
routing to 78
with middleware 76–78

status method 100
strict equality operator (===) 72

See also triple-equals operator
(===)

String object 157
Structured Query Language. See

SQL
Licensed to <miler.888@gmail.com>

INDEX236
Stylus tool 200
subapplications 11–12
Sublime Text editor 175
Supererror module 230
Supertest, testing servers

with 159–171
filling in code for first

tests 165–166
testing HTML responses 166
testing simple API 161–165

T

target attribute 183
TDD (test-driven

development) 148–149
templates, EJS. See EJS
Temporary Redirect (307) sta-

tus code 102
test/ folder 221
testing applications 146–171

Mocha testing
framework 150–159
adding more tests

154–158
Node.js testing 151
reversing tests 159
running code before

test 158
setting up Mocha and

Chai assertion
library 151–152

testing for errors 159
writing first test 153–154

overview 147–150
test-driven development. See

TDD
testing Express servers with

Supertest 159–171

filling in code for first
tests 165–166

testing HTML responses
166

testing simple API
161–165

text/plain content type 191
third-party middleware

libraries 38–40
express.static 38–39
Morgan logger 38

third-party modules, with
package.json and npm
21–23

throw keyword 66
time joined property 125
TLS (Transport Layer

Security) 78
toUpperCase function 156
triple-equals operator (===) 174
Twitter Bootstrap 47
TypeError 156

U

Ubuntu 123
Uglify task 208
Unauthorized (401) error 102
Underscore.js 224
unit tests 159
upgrading dependencies 226
url variable 21
urlAttempted property 106
User object 158
User.find 130
User-Agent header 163
userAgent property 106
username field 126
users variable 132

V

variables, in LESS 194–196
verbs. See methods
view engines 105–109

complicated view
rendering 105–107

Consolidate.js 108–109
making all view engines

compatible with
Express 108–109

simple view rendering 105
views 43–48
views directory 130
views/ folder 221

W

web servers, building with
Node.js 28

Windows 123

X

X-Content-Type-Options
header 192

X-Frame-Options header 190
X-Powered-By: Express

header 189
x-powered-by option,

disabling 188–189
X-Response-Time header 40
XSS, mitigating with HTTP

headers 181
X-XSS-Protection header 181

Z

Zombie.js 230
Licensed to <miler.888@gmail.com>

Evan M. Hahn

E
xpress.js is a web application framework for Node.js.
Express organizes your server-side JavaScript into test-
able, maintainable modules. It provides a powerful set of

features to effi ciently manage routes, requests, and views along
with beautiful boilerplate for your web applications. Express
helps you concentrate on what your application does instead
of managing time-consuming technical details.

Express in Action teaches you how to build web applications
using Node and Express. It starts by introducing Node’s
powerful traits and shows you how they map to the features
of Express. You’ll explore key development techniques, meet
the rich ecosystem of companion tools and libraries, and get a
glimpse into its inner workings. By the end of the book, you’ll
be able to use Express to build a Node app and know how to
test it, hook it up to a database, and automate the dev process.

What’s Inside
● Simplify Node app setup with Express
● Testing Express applications
● Use Express for easy access to Node features
● Data storage with MongoDB
● Covers Express 4 and Express 5 alpha

To get the most out of this book you’ll need to know the basics
of web application design and be profi cient with JavaScript.

Evan Hahn is an active member of the Node and Express
community and contributes to many open source JavaScript
projects.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/express-in-action

$39.99 / Can $45.99 [INCLUDING eBOOK]

Express IN ACTION

WEB DEVELOPMENT

M A N N I N G

“Chock-full of helpful
examples for both the novice

and advanced user.”
—Jeff Smith

Single Source Systems

“Everything you need
 to know to develop robust

applications.”—Paul Shipley
DTS Food Laboratories

“Take the pain out of
Node.js with

 Express in Action!”—William E. Wheeler
author of Spring in Practice

“The fast track to
developing versatile

 HTTP applications.”
—Ruben Verborgh

Ghent University – iMinds

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions
	Getting the source code
	Author Online
	About the author

	about the cover illustration
	Part 1—Intro
	1 What is Express?
	1.1 What is this Node.js business?
	1.2 What is Express?
	1.2.1 The functionality in Node.js
	1.2.2 What Express adds to Node.js

	1.3 Express’s minimal philosophy
	1.4 The core parts of Express
	1.4.1 Middleware
	1.4.2 Routing
	1.4.3 Subapplications
	1.4.4 Conveniences

	1.5 The ecosystem surrounding Express
	1.5.1 Express vs. other web application frameworks
	1.5.2 What Express is used for
	1.5.3 Third-party modules for Node.js and Express

	1.6 The obligatory Hello World
	1.7 Summary

	2 The basics of Node.js
	2.1 Installing Node
	2.1.1 Running your first Node script

	2.2 Using modules
	2.2.1 Requiring built-in modules
	2.2.2 Requiring third-party modules with package.json and npm
	2.2.3 Defining your own modules

	2.3 Node: an asynchronous world
	2.4 Building a web server with Node: the http module
	2.5 Summary

	3 Foundations of Express
	3.1 Middleware
	3.1.1 Hello World with Express
	3.1.2 How middleware works at a high level
	3.1.3 Middleware code that’s passive
	3.1.4 Middleware code that changes the request and response
	3.1.5 Third-party middleware libraries

	3.2 Routing
	3.3 Extending request and response
	3.4 Views
	3.5 Example: putting it all together in a guestbook
	3.5.1 Getting set up
	3.5.2 The main app code
	3.5.3 Creating the views
	3.5.4 Start it up

	3.6 Summary

	Part 2—Core
	4 Middleware
	4.1 Middleware and the middleware stack
	4.2 Example app: a static file server
	4.2.1 Getting set up
	4.2.2 Writing your first middleware function: the logger
	4.2.3 The static file server middleware
	4.2.4 404 handler middleware
	4.2.5 Switching your logger to an open source one: Morgan
	4.2.6 Switching to Express’s built-in static file middleware

	4.3 Error-handling middleware
	4.4 Other useful middleware
	4.5 Summary

	5 Routing
	5.1 What is routing?
	5.1.1 A simple routing example

	5.2 The features of routing
	5.2.1 Grabbing parameters to routes
	5.2.2 Using regular expressions to match routes
	5.2.3 Grabbing query arguments

	5.3 Using routers to split up your app
	5.4 Serving static files
	5.4.1 Static files with middleware
	5.4.2 Routing to static files

	5.5 Using Express with HTTPS
	5.6 Putting it all together: a simple routing demo
	5.6.1 Setting up
	5.6.2 The main app code
	5.6.3 The two views
	5.6.4 The application in action

	5.7 Summary

	6 Building APIs
	6.1 A basic JSON API example
	6.2 A simple Express-powered JSON API
	6.3 Create, read, update, delete APIs
	6.3.1 HTTP verbs (also known as HTTP methods)
	6.3.2 CRUD applications with HTTP methods

	6.4 API versioning
	6.5 Setting HTTP status codes
	6.5.1 Setting HTTP status codes
	6.5.2 The 100 range
	6.5.3 The 200 range
	6.5.4 The 300 range
	6.5.5 The 400 range
	6.5.6 The 500 range

	6.6 Summary

	7 Views and templates: Pug and EJS
	7.1 Express’s view features
	7.1.1 A simple view rendering
	7.1.2 A complicated view rendering
	7.1.3 Making all view engines compatible with Express: Consolidate.js

	7.2 Everything you need to know about EJS
	7.2.1 The syntax of EJS

	7.3 Everything you need to know about Pug
	7.3.1 The syntax of Pug
	7.3.2 Layouts in Pug
	7.3.3 Mixins in Pug

	7.4 Summary

	Part 3—Express in Context
	8 Persisting your data with MongoDB
	8.1 Why MongoDB?
	8.1.1 How Mongo works
	8.1.2 For you SQL users out there
	8.1.3 Setting up Mongo

	8.2 Talking to Mongo from Node with Mongoose
	8.2.1 Setting up your project
	8.2.2 Creating a user model
	8.2.3 Using your model

	8.3 Authenticating users with Passport
	8.3.1 Setting up Passport

	8.4 Summary

	9 Testing Express applications
	9.1 What is testing and why is it important?
	9.1.1 Test-driven development
	9.1.2 Cardinal rule: when in doubt, test

	9.2 Introducing the Mocha testing framework
	9.2.1 How does Node.js testing work?
	9.2.2 Setting up Mocha and the Chai assertion library
	9.2.3 What happens when you run your tests
	9.2.4 Writing your first test with Mocha and Chai
	9.2.5 Adding more tests
	9.2.6 More features of Mocha and Chai

	9.3 Testing Express servers with SuperTest
	9.3.1 Testing a simple API
	9.3.2 Filling in the code for your first tests
	9.3.3 Testing HTML responses

	9.4 Summary

	10 Security
	10.1 The security mindset
	10.2 Keeping your code as bug-free as possible
	10.2.1 Enforcing good JavaScript with JSHint
	10.2.2 Halting after errors happen in callbacks
	10.2.3 Perilous parsing of query strings

	10.3 Protecting your users
	10.3.1 Using HTTPS
	10.3.2 Preventing cross-site scripting attacks
	10.3.3 Cross-site request forgery (CSRF) prevention

	10.4 Keeping your dependencies safe
	10.4.1 Auditing the code
	10.4.2 Keeping your dependencies up to date
	10.4.3 Check against the Node Security Project

	10.5 Handling server crashes
	10.6 Various little tricks
	10.6.1 No Express here
	10.6.2 Preventing clickjacking
	10.6.3 Keeping Adobe products out of your site
	10.6.4 Don’t let browsers infer the file type

	10.7 Summary

	11 Deployment: assets and Heroku
	11.1 LESS, a more pleasant way to write CSS
	11.1.1 Variables
	11.1.2 Functions
	11.1.3 Mixins
	11.1.4 Nesting
	11.1.5 Includes
	11.1.6 Alternatives to LESS

	11.2 Using Browserify to require modules in the browser
	11.2.1 A simple Browserify example

	11.3 Using Grunt to compile, minify, and more
	11.3.1 Installing Grunt
	11.3.2 Compiling LESS with Grunt
	11.3.3 Using Browserify with Grunt
	11.3.4 Minifying the JavaScript with Grunt
	11.3.5 Using Grunt watch
	11.3.6 Other helpful Grunt tasks

	11.4 Using connect-assets to compile LESS and CoffeeScript
	11.4.1 Getting everything installed
	11.4.2 Setting up the middleware
	11.4.3 Linking to assets from views
	11.4.4 Concatenating scripts with directives

	11.5 Deploying to Heroku
	11.5.1 Getting Heroku set up
	11.5.2 Making a Heroku-ready app
	11.5.3 Deploying your first app
	11.5.4 Running Grunt on Heroku
	11.5.5 Making your server more crash resistant

	11.6 Summary

	12 Best practices
	12.1 Simplicity
	12.2 File structure pattern
	12.3 Locking down dependency versions
	12.3.1 The simple way: eschewing optimistic versioning
	12.3.2 The thorough way: npm’s shrinkwrap command
	12.3.3 Upgrading and adding dependencies

	12.4 Localized dependencies
	12.4.1 Invoking commands directly
	12.4.2 Executing commands from npm scripts

	12.5 Summary

	Appendix—Other helpful modules
	index
	Symbls
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back cover

